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Preface 

The purpose of this thesis is to demonstrate the 

feasibility of the moving-bank multiple model adaptive 

estimation algorithms as applied to flexible spacestructure 

control.    Moving-bank multiple model adaptive estimation/ 

control is an attempt to reduce the computational loading 

associated with the implementation of a full-scale multiple 

model adaptive estimator/controller.    The results of  this 

thesis indicate that although the use of a moving bank may 

provide increased state estimation performance,   similar 

performance can be obtained  from a fixed bank estimator 

with a discretization  that covers the range of parameter 

variation. 
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Professor Peter S.  Maybeck,   for the personal and profes- 

sional commitment he has shown to me.     I also wish to thank 
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flexible space structure.     Finally,  I wish to thank my wife 
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AFIT/GE/ENG/86D-41 

Abstract 

This investigation focuses on the use of moving- 

bank multiple model adaptive estimation and control (MMAE). 

Moving-bank MMAE reduces the computational burden of MMAE 

by implementing only a subset of the Kaiman filters 

(9 filters versus 100 in this research) that are necessary 

to mathematically describe the system to be estimated/ 

controlled.  Important to the development of the moving- 

bank MMAE are the decision logics governing the selection 

of the subset of filters. The decision logics cover three 

situations: initial acquisition of unknown parameter 

values; tracking unknown parameter values; and reacquisi- 

tion of the unknown parameters following a "jump" change 

in these parameter values. 

The thesis applies moving-bank MMAE to a rotating 

two bay truss model of a flexible spacestructure. The 

rotating two bay truss approximates a space structure that 

has a hub with appendages extending from the structure. 

The mass of the hub is large relative to the mass of the 

appendage.  The hub is then rotated to point the appendage 

in a commanded direction.  The mathematical model is 

developed using finite element analysis, transformed into 

modal formulation, and reduced using a method referred to 

IX 
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as singular perturbations.    Multiple models are developed 

by assuming that variation occurs in the mass and stiff- 

ness of the structure.     Ambiguity function analysis and 

Monte Carlo analysis of individual filters are used to 

determine if the assumed parameter variation warrants the 

application of adaptive control/estimation techniques. 

Results  indicate that the assumed parameter vari- 

ation is sufficient to require adaptive control and that 

the use of a moving bank may provide increased state esti- 

mation performance;  however,  the increase in performance 

is due primarily to multiple model adaptive estimation. 

Similar performance can be obtained from a fixed bank 

estimator with a discretization that covers the range of 

parameter variation. 
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MOVING-BANK MULTIPLE MODEL ADAPTIVE ESTIMATION 

APPLIED TO FLEXIBLE SPACESTRUCTURE CONTROL 

/ 

I.     Introduction 

^A significant problem in estimation and control is 

the uncertainty of parameters in the mathematical model 

used in the design of controllers and/or estimators.    These 

parameters may be unknown,  varying slowly,   or changing 

abruptly due to a failure in the physical  system.     These 

changes in parameters often necessitate the identification 

of parameters within the mathematical model and changing 

the mathematical model during a real-time control problem. 

This is often referred to as adaptive control and/or esti- 

mation.     This thesis investigates methods of adaptive con- 

trol implementing a moving-bank multiple model adaptive 

estimator. /NVT'V^   '      .t-C^i^vi-  '     .   >-'—       )^<rH; ■'   > 
■■-.u.-^/t. _..-.-.,- -fi_ J ——■ .---r    .       ij"" 

y-i-n 
/J 4-— ,7 

1.1.        -Background v 
y

f . .        w 
>     p. 

ti 

Multiple Model Adaptive Estimation   (MMAE)   involves 

forming a bank of Kaiman  filters   (3;   ti;   7;   12;   13;   17;   18; 

20;129-135).     The  Kaiman filter is a recursive data pro- 

cessing algorithm   (19:4)   and is the optimal estimator for a 

known linear system with dynamics and measurement noises 

modeled as white  and Gaussian.    Each Kaiman filter is 

1   ' 
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associated with a possible value of an uncerta i parameter 

vector.     It is assumed that the uncertain para aters can 

take on only discrete values;  either this is r isonable 

physically or discrete values are chosen from ae continu- 

ous parameter variation range.    The output of • ich filter 

is then weighted by the a posteriori probabili / of that 

filter being correct/  conditioned on the obser 3d time 

history of measurements.     These weighted outpu s are summed 

to form ein estimate of the system states.     The equations 

for the MMAE algorithms,   as well as convergeno properties, 

are  fully developed in Chapter II. 

MMAE has been successfully implemented .n several 

estimation and control problems.    The applicat m of MMAE 

to the tracking of airborne targets has been r^ searched 

(9;   15;   27).     The control- method has also been ised in con- 

trolling fuel tank fires   (33),  addressing terr. -n correla- 

tion   (28) ,  and generating estimators for probl> is in which 

large initial uncertainties cause non-adaptive extended 

Kaiman filters to diverge   (26). 

An inherent problem of MMAE is the numl ^r of filters 

required.     For example,   if there are two uncer tin param- 

eters and each can assume one of 10 possible d ;crete 
2 

values,  then 10    =  100  separate filters are re' lired. 

Problems requiring larger numbers of uncertain )arameters 

and/or finer parameter discretization quickly ! ^come 

impractical  for implementation   (3;   6) . 

\mi&!)ümi*!*u%xi^^ 
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Several approaches have been used to alleviate the 

computational burden of MMAE (3:5). One method uses Markov 

processes to model the parameter variation (1; 23). A 

process is considered Markov if its present parameter value 

depends only on the previous parameter value (1:418). Other 

methods include: using "pruning" and/or "merging" of "deci- 

sion tress" of the possible parameter time history (22; 

23) , hierarchically structuring the algorithms to reduce 

the number of filters (4) , and a method in which the filter 

is initialized with a coarse parameter space discretization, 

but after the filter converges to the "nearest" parameter, 

the filter is rediscretized using a simplex directed method 

(14). 

A method proposed by Maybeck and Hentz (6; 18) is 

to implement a small number of estimators in a "moving- 

bank." For instance, one might take the current best esti- 

mate of the uncertain parameters, and implement only those 

estimators (and controllers) that most "closely" surround 

the estimated value in parameter space.  For the case of 

two uncertain parameters requiring 100 separate filters, 

the three discrete values of each parameter that most 

closely surround the estimated value can be selected, only 
2 

requiring only 3 =9 separate filters instead of 100; see 

Figure 1-1. As the parameter estimate changes, the choice 

of filters could change, resulting in a "move" of the bank 

^M^^WW^^^^^ 
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********** 

********** 

PARAMETER A2 

a used Kaiman filter 
* unused Kaiman filter 
x current best estimate of the 

true parameter value 

Fig. 1-1. Moving-bank Multiple Model Adaptive Estimator 

of 9 filters. Equations for the moving-bank MMAE are 

developed in Chapter II. 

Hentz (6) applied the moving-bank MMAE to a simple 

but physically motivated two-state system model and was 

able to demonstrate performance equivalent to the full-bank 

MMAE algorithm (and also equivalent to a benchmark of an 

estimator or controller artificially given knowledge of the 

true parameters) , with an order of magnitude less computa- 

tional loading. 
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Filios   (3)  applied the same type of algorithms to a 

reduced order model of a  large flexible spacecraft.   The par- 

ticular problem was such that adaptivity was not required 

for the range of parameter variations that made physical 

sense for this application;   robust control  laws without 

adaptivity could in fact meet performance  specifications. 

Research had been previously accomplished on the  same model 

which indicated that adaptivity might be needed if very high 

angular rates were achieved during a maneuver  (29). 

1.2. Problem 

The use of a full  scale   (full-bank)   Multiple Model 

Adaptive Estimator   (MMAE)   presents a computational burden 

that is too large for most applications   (3;   6;   18).     The 

moving-bank MMAE was evaluated for a physically motivated 

but simple system and shown to be feasible   (6;   18) ;  however, 

the moving-bank MMAE has yet to be successfully applied to 

a more complex space structure application,  requiring adap- 

tive estimation/control.     This research is directed towards 

applying the moving-bank MMAE to a system requiring adaptiv- 

ity and to assess its potential as an estimator and/or con- 

troller. 

1.3. 

The moving-bank multiple model adaptive algorithms 

are applied to a physical model  representative of  problems 

associated with large space structures.     The model is a two- 

bay  truss attached to a hub;   see Figure 1-2.     The   two-bay 

w&xwMmi^^ 
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truss is 100 inches long and 18 inches high. Only two 

degrees of freedom (x-y plane) are allowed and translational 

motion is not permitted. Non-structural masses are added 

to the structure and have two purposes. First, they can be 

associated with fuel tanks or some mass on a structure that 

can be expected to vary in time.  Secondly, the non- 

structural masses are large relative to the structural mass 

in order to attain the low frequency structural model asso- 

ciated with large space structures (16). The model is 

described in terms of mass and stiffness matrices obtained 

from a finite-element analysis.  The model is fully devel- 

oped in Chapter III. 

Two uncertain parameters are investigated: the non- 

structural mass and the stiffness matrix.  The uncertain 

parameters are discretized into 10 points yielding a 10 by 

10 (100 point) parameter space.  It is assumed that the non- 

structural masses vary -50 percent to +40 percent from the 

nominal value in discrete steps of 10 percent.  The entire 

stiffness matrix is allowed to vary 20 percent to -16 per- 

cent from the nominal value in discrete steps of 4 percent. 

The dynamics and measurement noise characteristics are 

assumed known and modeled as white Gaussian processes. 

1.4.   Approach 

The research is divided into three phases: sensi- 

tivity analysis, a parameter and state estimation study. 

WVJWW-AA*JV;V^://^^ 



and a controller study.     The sensitivity analysis of non- 

adaptive algorithms is conducted using ambiguity functions 

(20:97-99);   it will provide information about the perform- 

ance to be expected from an estimator   (20:97)   and is used 

to assess the need for adaptivity and also to provide 

insight into the discretization of the parameter space. 

The estimator and controller studies will evaluate the 

potential of the moving-bank multiple model adaptive 

algorithm to provide good state estimation and system con- 

trol performance. 

1.4.1.    Ambiguity Functions Analysis.    A sensitivity 

analysis is conducted using ambiguity functions   (3:33-34; 

6:332-333;   20:97-99).     The  sensitivity analysis  is done on 

non-adaptive estimators based on a representative sample of 

parameter  sets to determine what parameters can and should 

be estimated.     Relatively low sensitivity to a parameter 

change makes identification of parameter values difficult 

and removes the need for parameter estimation,   since all 

filters within the parameter variation range will do a good 

job of state estimation   (3:70). 

The ambiguity analysis also lends valuable insight 

into the discretization of the parameter space   (3:91).     High- 

sensitivity ambiguity functions  illustrate the need for a 

tightly discretized parameter range.     Less sensitive ambigu- 

ity functions show that fewer parameter points are needed 

to span a given parameter variation range. 

8 
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^">, 1.4.2.  Parameter and State Estimation Study.  The 

parameter and state estimation study investigate the per- 

formance of various decision logics for moving or changing 

the size of the bank, with respect to initial acquisition 

of the true parameter values, and also identification of 

when a change in this true parameter value has occurred. 

The primary performance criteria is the accuracy of the 

state estimates and secondarily the accuracy of the param- 

eter estimates.  The decision logics that are studied 

include Residual Monitoring, Parameter Position Estimate 

Monitoring, Parameter Position and Velocity Estimate 

Monitoring, and Probability Monitoring (3; 6; 18).  These 

are developed in Chapter II. 

Two benchmark estimators will provide standards for 

state estimate evaluation: a single estimator with artifi- 

cial knowledge of the true parameter set and a robust, 

single fixed-gain estimator.  The former will indicate the 

best state estimation performance that could hope to be 

achieved using adaptive control while the latter estimator 

will provide information on the performance that can be 

attained with a non-adaptive estimator. 

The parameter and state estimation study is accom- 

plished through Monte Carlo Analysis. A Monte Carlo Analy- 

sis involves obtaining a statistically valid number of 

samples of an error process through simulation and then 

using this data to compute sample statistics as an 

«S>cu«4««aü«JfitM^^ 



Oä^kj     approximation to the true process statistics (19:329). 

The process statistics provide information on the perform- 

ance of the estimator or controller being investigated. 

The simulation is conducted for the following cases: 

a. The true parameter set is constant and equal 

to one of the discretized parameter sets. There are two 

possible initial conditions: 

1. The true parameter set is within the ini- 

tial discretization chosen for the moving-bank. 

2. The true parameter set is outside the ini- 

tial discretization chosen for the moving-bank. 

b. The true parameter set is constant but not 

equal to one of the discretized parameter sets.  This 

VJLJ     better represents a real world problem since the true 

parameter set, with probability 1, will not be perfectly 

matched to a filter in the full bank.  Only the condition 

where the true parameter set is within the initial condi- 

tions chosen for the moving-bank is investigated, since 

similar transient results would be obtained for part 2 of 

a. 

cT The true parameter set is varying.  Two effects 

can be considered: 

1.  The true parameter set is varying and moves 

continuously away from the parameter position upon which 

the bank has previously locked.  This could be the result 

*MR?B     of a slow failure of some part of the system model or 

10 



perhaps due to the depletion of fuel or redistribution of 

weight within a space structure. 

2.  The true parameter set undergoes a jump 

change to some other parameter set, perhaps due to an 

abrupt failure in the system. 

1.4.3.  Controller Evaluation.  The State and Param- 

eter Estimation Study is used to determine the "best" param- 

eter estimation method. This method is used as the basis 

for a sliding bank multiple model adaptive controller. 

A Monte Carlo Analysis is performed on this controller, a 

multiple model adaptive controller, and a controller 

designed on a nominal value of the parameter vector but 

using the moving-bank model as a state estimator. The con- 

troller algorithms will be more fully developed in Chap- 

ter II. 

Two benchmark controllers will provide standards 

for controller evaluation: a single controller with arti- 

ficial knowledge of the true parameter set and a robust, 

single fixed-gain controller.  The former will indicate the 

best performance that could hope to be achieved using 

adaptive control while the latter controller will provide 

information on the performance that can be attained with a 

non-adaptive controller. 

11 
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1.5. Overview 

Chapter II develops the detailed algorithms for the 

moving-bank MMAE and associated controllers and estimators. 

Chapter III discusses the two-way truss model. Chapter IV 

presents the ambiguity functions analysis and the simulation 

used to evaluate the moving-bank MMAE.  Chapter V contains 

analysis of the proposed algorithms and Chapter VI provides 

conclusions and recommendations. 

IP 

12 
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II.     Algorithm Development 

11.1. Introduction 

This chapter develops the algorithms for the full- 

scale and moving-bank Bayesian Multiple Model Adaptive 

Estimator.    First,  the full-scale model  is developed.     This 

is then modified for the moving bank case.     The Ambiguity 

Functions analysis is also developed. 

11.2. Bayesian Estimation 
Algorithm Development 

Development of the full-scale Bayesian Multiple 

model Adaptive Estimation algorithms is presented in this 

section.     For a more rigorous development,   the reader is 

directed to reference   (20:129-136). 

Let the  system under consideration be discrete and 

described by   (3;   6;   19): 

xit.^,)   =  ^(t.^, ,t.)x(t.)   + B-(t.)u(t.)   + G,(t.)w,(t.) 
T:    i+l i+l    i —    i d    i —    i d    i -d    i 

zlt^   = H(ti)x(ti)   + vit^ (II-l) 

where "_" denotes a vector stochastic random process and: 

x(t.): n-dimensional state vector, 
^r  i 

<Ht. , t.): state transition matrix, 

u(t.): r-dimensional known input vector, 

B,(t.): control input matrix. 

13 
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a/GOji w, (t.):   s-dimensional white Gaussian dynamics 
*$$■' s noise vector, 

Gd(t.):  noise input matrix, 

z(t.):   m-dimensional measurement vector, 
•w       1 

H(t.):   measurement matrix, 

v(t.):   m-dimensional white Gaussian measurement 
1      noise vector, 

and the following statistics apply: 

E{wd(ti)}   =0, 

E^d(ti^dT(tj,}  =Qd(ti)5ij' 

E{v(t.)}   = 0, 

E{v(ti)vT(tj)}  = R(ti)6i., 

where 6. .  is the Kronecker delta function.     It is also 

assumed that x(t  ),  w, (t.),  and v(t.)   are  independent for —    o      •sra    i ■«■    i 

all t.. 

Let a be the uncertain p-dimensional parameter 
p 

vector which is an element of A, where A is a subset of R . 

This parameter vector may be uncertain but constant, slowly 

varying, or it may undergo jump changes.  The parameter 

vector a can affect any or all of the following within 

Equation (II-l) : $, B,, G,, Q,, H, and R.  The Bayesian 

estimator conceptually computes the following conditional 

density function: 

14 



fx(t.),a|Z(t.)^'^l^i)   " fx(t.)|a/Z(t.)(^l^^i) 

where Z(t.)   is the vector of measurements from t    to t., 
~    i 01 

I(ti)    =    t2T(ti),2T(ti_1),...,ZT(t0)]T 

The  second term on the right side of Equation 

(II-2)  can be further evaluated: 

'alMt.)^^  =  ^Izit.hZU^^i'W 
-V 'S* 

fa^(ti)l4(ti-l)(-'~il-i"l) 

fz(t.)iz(t. rrw^iiT5 

WHa^t.   ^^il^i-l^aiZU.   ^^I^i-i) 

/, ~    i   ' ~ ~    i—x -=• ■-^    i-± A 

Conceptually,   Equation   (II-3)   can be  solved recur- 

sively,   starting  from an a priori probability density func- 

tion of f   (a),   since  f   ,.   , .     „ ,.       . (z. la,Z.   ,)   is Gaussian a. z \z.- i \ a,& yx-i   i i   —x — —l—J. 
-s: -w      1    '-ss  -sr       X~± 

/N        _ -       T 
with a mean of H(t.)x(t.)   and covariance   [H(t.)P(t.)H   (t.) 

y\ ^ 

+R(t.)]f   where  x(t.)   and P(t.)   are  the  conditional mean and 

covariance respectively of x(t.)   just prior to the measure 

A^ at t.,   assuming  a particular realization a of a. 
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Using the conditional mean,   the estimate of x(t.) 

becomes: 

E^it.) Ilit.)   = 1.)  Vf V^t.) |Z(t  ) ^Iii>^ 
-00 - ~ 

'f-  I /A ^^i) .a|Z (t.) ^ajZ^daldx 
(II-4) 

EiMt.^Zit.)   «Z.}  =   f  r[/   fx(t  )lafZ(t  .(xl^Z.) 

• «a|Z(t ,(«|^)fei*i 
— i—     1 

=
 /A

[
/   -'^^i) ja.KtJ^l^i^^alKtJ^iy da 

(II-5) 

where the term in brackets is the estimate  of x(t.)  based on 

a particular value of the parameter vector.     This would be 

the output of the Kaiman filter based on a realization of 

the parameter vector.     When a is continuous over A,  this 

would require an infinite number of filters in the bank. 

To reduce the number of filters,   the parameter  space is 

usually discretized,  yielding a finite number of filters. 

The integrals over A in Equations   (II-4)   and  (II-5)   then 

became summations.     Defining p, (t.)   as the probability that 

the k      elemental  filter  is correct,  conditioned on the mea- 

surement history,   it can be shown by a method analogous to 

the development  for Equation   (11-3)   that p, (t.)   satisfies: J 
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p^v = 
■zlt.) la,Z (t.^) ^il^k^i-l) •P]c(ti-1) 

I fz(t.)|afZ(t.   J^ilSj^i-l^Pj^Vl» 
i=l ~    x    ~ ~    ^^ ■L 

(II-6) 

xd:.*)   = E{x(ti)|Z(ti)   = Z.}  =    Z ik(ti+)-pk(ti)        (II"7) 

where a e   [a, ra_r.. .a..]   and xv(t.   )   is the mean of x(t.) 

conditioned on a =» a,   and Z(t.)   = Z.f  i.e.   the output of 

the k      Kaiman filter in the bank,  based on the assumption 

a = a. .     Pictorially,   the algorithm appears as in 

Figure II-1. 

The probability weighting factors for each Kaiman 

filter are calculated from Equation   (II-6) ,   where 

^(t^ la^ZCt^) (^il^kf-i-l 

-1 

(2 
.m/2,A   -  .,1/2 exP   [-(l/2)rk(ti)Ak-(ti)rk(ti)] 

IT) A. (t.) Tc%wi (II-8) 

and 

^'V -Vi^^h >Hk'V + «k'V 

Ek^i'  =5i- «k^i'iEk^i ' 

m = number of measurements 
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Both the residual covariance A, (t.)   and the residual 
k i 

r. (t.) itself are readily available from the k  elemental 

filter. The estimate of the parameter and the covariance of 

the parameter are given by: 

00 

K 
/a [ E pv(t.)6(a - a.)] da 

k=l K 1  '   K 

K 
^^p^t.) (II-9) 

and 

E{[a - alt.)] [a - a (t^ ] T| Z (t^ = Zi} 

K 
= Z[ak -  attj^)]^ - alt^r • Pk(ti)      (11-10) 

The covariance of the state estimate is given by: 

Plt^) = E{[x(ti) - xCt/^HxU.) - x(ti
+)]T|Z(ti) = Z.} 

■/ 
[x - xlt.^Hx -xlt^)]^ |2(t jUjZ^dx 

-co ~~    i   '—    i 
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K #• oo 
=    Zp(t)/       [x - x(t.+)][x-x(t. + )]T 

k=l K    1 -/ „     ^ i-i 

^(t^la^Zlt.)^!^!^ 

Z Pk{ti){pk(ti
+)   +   [^(t^)   -xit^)] 

k»! 

[^k(ti+)   " ^(t."^)]1} (11-11) 

where P, (t.   )   is the covariance of the state estimate of k    i 

the k      elemental filter. 

II.2.1.     Filter Convergence.     The Bayesian Multiple 

Model Adaptive Estimator has been shown to be optimal and 

to converge if the true value of the parameter is nonvary- 

ing   (5) .    Convergence  for this case occurs when the proba- 

bility associated with one elemental filter  is essentially 

one and the probability associated with all other elemental 

filters is essentially zero.     The MMAE will converge  to the 

elemental filter with parameter value equal to,   or most 

closely representing,   the true parameter set,  as defined 

in   (5). 

There are no theoretical results available for 

varying parameters   (3:18;   6:8).     The fact that the  filter 

can converge to one filter for a non-varying true parameter 

value,   does give reason for  some concern.     For example,  if 

the true parameter value  is varying very slowly,   the 
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)^vj. algorithm may assume one filter  is correct with probabil- 

ity essentially equal to one.     However,   the true parameter 

value may eventually become significantly different from 

the value estimated by  the  filter   (6:9),  resulting in filter 

divergence. 

Another possibility is that the algorithm may con- 

verge and lock onto the  "wrong"   filter.    The filter is, 

to some degree,  always based on an erroneous model and may 

converge  to the wrong parameter point,  especially when 

operated for a long period when noises are assumed small 

(20:23).     Dasgupta and Westphal  investigated the case of 

unknown biases in the measurement processes and showed that 

the algorithm may converge  to a parameter point that is not 

close to the true value of the parameter space   (3:17;   6:8). 

One method of preventing divergence  is to add 

pseudonoise to the assumed model   (20:25)   in each elemental 

filter;   however,  too much pseudonoise addition tends to 

"mask"  the difference between the "correct"   and "incorrect" 

filters.     The performance of the MMAE is dependent upon 

significant differences between the residual characteris- 

tics of the "correct"  versus "incorrect" elemental filters. 

If the residuals are consistently in the  same magnitude. 

Equations   (II-6)   and  (II-8)   show that the filter with the 

smallest   |A,|, will experience  an increase  in its probabil- 

ity weighting;  however,   |A. | is independent of the residuals 

as well  as the "correctness"   of  the k      model   (20:133). 
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Hentz and Filios (3; 6) prevented the "lock on" 

problem discussed previously by fixing the lower bound of 

the probabilities associated with the implemented filters 

(1; 20:27).  If the computed value of any probability fell 

below a threshold, it was reset to some minimum value deter- 

mined by performance analysis. 

II.3.  Moving Bank Algorithm 
Development (3:22-33) 

The Multiple Model Adaptive Estimator presents a 

computation burden that is too large for most practical 

applications (3; 7; 18) . Maybeck and Hentz demonstrated 

that the full bank of filters could be replaced by a subset 

of filters based on discrete parameter values "closest" to 

the current estimate of the parameter vector.  The proba- 

bility associated with non-implemented filters is set to 0 

while the probability weightings are distributed among the 

implemented filters. As the parameter set estimate changes, 

filters that are "closer" to the new parameter estimate are 

implemented while those "furthest" away are removed. 

Maybeck and Hentz also investigated changing the discretiza- 

tion levels of the moving bank model. During the acquisi- 

tion stage, the implemented filters are set to a coarse 

discretization, then changed to finer discretizations as 

the parameter estimate improves.  Therefore, the implemented 

filters would not necessarily occupy adjacent discrete 
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points in the parameter space,   as would be used in the full 

bank MMAE, 

II.3.1.    Weighted Average   (3;  6).    The outputs of 

each elemental filter of the moving bank estimator,   are 

weighted and summed in the same manner as Equations   (II-6) 

and   (II-7) ;   however,  only the implemented filters in the 

moving bank are summed.     If J filters are implemented. 

Equation   (II-7)  becomes: 

x{t.+)   =    Z x. (t. + )p. (t.) (11-12) 
1 1*1 J     x       1     x 

Similarly, Equation (II-6) describing the p. (tj's become: 

fi(z(ti))Pi(ti_1) 
Pjtt.)»-^ i—:—1 ^   . (ii-i3) 

^1
fk^(ti,)Pk(ti-i) 

and Equation   (11-8)   similarly is: 

:.(z(t.)) = -r^ cexp[ -(l/2)r.T(t.)A. 1(t.)r.(t.)] 
3  *    1 (2Tr)m/2|A.(t.)r -3      13 i -D     1 

3     X (11-14) 

and 

A^^)   = Hj(t.)Pj(ti")Hj
,r(ti) + R.ft..) 

r . (t.)   = z.   - H. (t.)x. (t.   ) —j     1        -1 31—31 

23 

KBSfflMSM'tö^^ 



m is the dimension of z   (number of measurements) 

R.   is the measurement noise  strength in the  j 
^ elemental filter. 

II. 3.2.     Sliding the Moving Bank   (3: 25) .     The deci- 

sion logic for moving the "bank"  is a critical area of 

interest.     The moving bank MMAE  is a  smaller version of the 

full bank MMAE, with the moving bank centered around a 

parameter estimate.     Typically,   the moving bank is not ini- 

tially centered on the true parameter point or the true 

parameter point may change.     This necessitates decision 

logic  for moving the "bank."     Several algorithms have pre- 

viously been  investigated including Residual Monitoring, 

Parameter Position Estimate Monitoring,  Parameter Position 

and Velocity Estimate Monitoring,   and Probability Monitor- 

ing   (3;   7;   18) . 

II.3.2.1. Residual Monitoring. Let a likelihood 

quotient for each elemental filter, L.(t.), be defined as 

the quadratic  form appearing in Equation  (II-8): 

L. (t.)   = r.T(t.)A."1(t.)r . (t.) 
j    i        —j       i    j i    3    i 

(11-15) 

The decision is made to move the bank if at time t.: 
i 

min[L1(ti), ^(t^, ..., LJ(ti)] > T     (11-16) 

where T is a threshold level with a numerical value that 

is determined during performance evaluations.  The bank is 
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moved in the direction of the filter with the smallest L. / 

as that filter would be expected to be nearest to the true 

parameter set. If the true parameter vector value is out- 

side the moving bank, it would be expected that all the 

likelihood quotients exceed the threshold. This method 

should respond quickly to a real need to move the bank but 

also give erroneous results for a single instance of large 

residuals possibly due to noise corruption. 

11.3.2.2. Probability Monitoring.    This method is 

similar to residual monitoring except that the conditional 

hypothesis probabilities,  generated by Equation   (II-6), 

are monitored.     If the conditional hypothesis probability 

associated with an elemental filter  is larger than a pre- 

viously determined threshold,   the bank is centered on that 

filter.    Maybeck and Hentz  found this decision logic,   as 

well as parameter position monitoring,  to provide the best 

performance.     However, probability monitoring required 

fewer computations than parameter position monitoring 

(7:93-99) . 

11.3.2.3. Parameter Position Estimate Monitoring. 

This method centers the bank around the current estimate of 

the true parameter set,  which is given by: 

a(t.)   =    Z  a.p. (t.) (11-17) 
1 i=l  ^   J     1 
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where J is the number of filters implemented in the moving 

bank.     Movement is initiated when the bank is not centered 

on the point closest to the current true parameter set 

estimate   (3:26). 

li.3.2.4.     Parameter Position and Velocity Estimate 

Monitoring.     This method estimates the velocity of the 

parameter position using the history of parameter position 

estimates.     The velocity estimate is used to estimate the 

position of the parameter set at the next sample time. 

The bank is centered at this estimate of the future param- 

eter point,   thereby adding "lead"  into the positioning of 

the bank   (22) .    Maybeck and Hentz  found this decision logic 

performed worse than parameter position estimate monitoring 

or probability monitoring  (6:85;   18:23),  not providing much 

desired lead but causing reduced stability in the bank 

location. 

II.3.3.    Bank Contraction and Expansion.     The 

filters in the moving bank model do not necessarily need 

to be at adjacent discretized parameter values;   see 

Figure II-2.     This may decrease the accuracy of the  initial 

estimate but it will increase the probability that the 

true parameter set lies within the bank. 

Maybeck and Hentz found that parameter acquisition 

performance can be  improved by  starting the moving bank 

with a coarse discretization so that the entire parameter 

26 

tomfoim.M^M^^^ 



& * 4t * * * * * * * * 

* o * * 0 * * D * * 

* * * * * * * * * * 

* * * * * * * * * * 

* D * * 0 * * o * * 

* * * * * * * * * * 

* * * * * * * * * * 

* D * * 0 * * D * * 

* * * * * * * * * * 

* * * * * * * * * * 

o elemental 
filter 

a. 

* * * * * * * * * * 

* * * * * * * * * * 

* * * * * * * * * * 

* * * * * * * * * * 

* * * * * * * * * * 

* * * * D 0 0 * * * 

* * * * G G G * * * 

* * * * D G G * * * 

* * * * * * * * * * 

* * * * * * * * * * 

a elemental 
filter 

b. 

Fig. II-2.  Bank Discretizations: a. coarse, b. fine 
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value range lies within the bank and then contracting the 

bank into a finer discretization when the parameter covari- 

ance (Equation (11-10)) drops below some selected threshold 

(3:28; 6:26; 18:25). 

Another method that may improve acquisition is to 

monitor the probability associated with a "side" of ths 

bank; see Figure II-3. The probability associated with 

each side would be calculated as: 
m 

Pside(ti) = 

I       f.(z(t,)) 
side  -1   1 

I f.(2(t.)) 
4 sides J   :L 

(11-18) 

D *          *         O         *         * D 

* 

* 

D 

* 

* 

***** 

***** 

*          *         D         *         * 

***** 

***** 

* 

* 

D 

* 

* 

D *          *         D         *         * D 

*       D elemental 
filter 

% 

Fig.   II-3.     Probability Weighting of Sides 
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Several possibilities exist for threshold logic.  If the 

probability associated with a side falls below a certain 

threshold, it can be "moved in." Conversely, if the proba- 

bility associated with a side rises above some threshold, 

the remaining three sides are "moved in." A third possi- 

bility is moving in all four sides if the summed proba- 

bility of all the "side" filters are below some threshold. 

The bank may also need to be expanded if the true 

parameter value undergoes a jump change to a point outside 

the range covered by the bank. The jump change could be 

detected by residual or probability monitoring.  For 

residual monitoring, the likelihood ratios for all the 

implemented filters are expected to be large and to exceed 

some threshold.  For probability monitoring, it is expected 

that the conditional hypothesis probabilities be "close" 

in magnitude.  The subsequent bank contraction is accom- 

plished in the same manner as discussed in the previous 

paragraphs. 

m 

II.3.4.     Initialization of New Elemental Filters 

(3:29-31;   6:26-30).     When the decision is made to move, 

expand,  or contract the bank, new filters must be brought 

on line and "incorrect filters"  discarded.     New filters 

require new values  for  $,  B,,  K   (Kaiman gain matrix),  H, 

x.(t.),  and p.(t.).     Except for the last two terms,   these 

are predetermined values associated with the  particular 

filter being  implemented. 
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The current moving bank estimate of x^.) is an 

appropriate choice for x.(t.) for a new elemental filter. 

The value for p.(t.) is dependent on the number of new 

filters being implemented.  If the bank "slides," as shown 

in Figure II-4af this involves either three or five new 

filters.  The probability weighting of the discarded 

filters is redistributed among the new filters.  This can 

be done equally amongst the new filters or in a manner that 

indicates the estimated "correctness" of the new filter. 

Hentz suggested the following (7:29): 

f .(z{t.)) (1- Z pv(t.)) 
r, t*    )    -       1   " UnCh 

pjch* i' "    l  f^IzTtjT) 

where ch = changed, unch = unchanged, and where f .(_z(t.)) 

is defined in Equation (11-14) but with the residual 

replaced by: 

r. (t.) = z. - H.x. (t.+) —j i   —i   3-3 1 

However, this requires additional computations and has 

demonstrated no significant performance improvement over 

dividing the probability weighting equally among the 

changed filters (6:104). 

A bank expansion or contraction can result in the 

resetting of all the filters in the bank as shown in 

Figure II-4b.  Dividing the probability weighting equally 
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Fig. II-4.  Bank Changes: a. move, b. expansion 
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among the new filters is appropriate since the old proba- 

bility weightings may no longer be valid. 

II.4.   Controller and Estimator Design (3:18-22; 6:33-43) 

Several controller and estimator designs are appro- 

priate for implementation in the moving bank or full-bank 

MMAE. All designs considered use the "assumed certainty 

equivalence design" technique (21:241), which consists of 

developing an estimator cascaded with a deterministic full- 

state feedback optimal controller. This method assumes 

independence between controller and estimator design and is 

the optimal stochastic controller design for a linear system 

driven by white Gaussian noise with quadratic performance 

criterion (21:17). 

The moving bank MMAE is the estimator used in this 

thesis.  Each elemental estimator within the full bank is a 

constant gain Kaiman filter whose design is associated with 

a particular point in the parameter space.  Each design 

assumes a time invariant system with stationary noise. 

Propagation of the elemental filter estimate, xk(t), is 

given by: 

^k(ti   >   =   $Ä(ti-l   >   +  Bdk^Vl* (11-19) 

^ 

and the estimate  is updated by: 

^k(ti  '   = ^k(ti   )   + Kk[^(ti)   ' Hk-k(ti   )] (11-20) 
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where, the subscript "K" indicates association with a 

particular point in the parameter space. 

The design of each controller is similar.  Each is 

a linear, quadratic cost, (LQ) full-state feedback optimal 

deterministic controller, based on an error state space 

formulation (19:297).  The controller is steady-state 

constant-gain, with gains dependent upon the particular 

value of the parameter set used in the design.  The LQ con- 

troller is developed fully in Appendix A. 

Three estimator/controller combinations are con- 

sidered. First, the estimator provides only a state vector 

estimate to a fixed-gain controller which is designed 

around a nominal value of the uncertain parameter set. 

The controller algorithm is of the form: 

S<V " -Go^nomli(tl+> I"-21' 

The second design method is for the estimator to 

provide parameter and state vector estimates to a controller 

with gains that are dependent on the parameter estimate: 

u(t.) = -G*[£(t.")]x(t.+) (11-22) 

where the parameter estimate generated at the previous 

sample time is used in order to reduce computational delay. 

A third approach is to form an elemental controller 

for each of the elemental filters of the sliding bank.  The 
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control outputs are probabilistically weighted, similar to 

Equation (11-12) , to form: 

J 
u(t.) =  2 P^(t.)u.(t.) (11-23) 

1   j=l ^  :L  ^  1 

where, 

-j(ti) ' -Gc[Äj^j<ti+) (11-24) 

This is usually referred to as a multiple model adaptive 

controller (MMAC) (21:253). 

Two benchmark controllers are also investigated: a 

single controller with artificial knowledge of the true 

parameter set and a robust, single fixed-gain controller. 

The former represents the "best" that can be achieved 

through adaptive control.  The robust controller will repre- 

sent the "best" control that can be achieved using non- 

adaptive control. 

II.5.   Ambiguity Function Analysis (3; 6; 20:97-99) 

Ambiguity function analysis can provide information 

about the performance of an estimator. The generalized 

ambiguity function is given by: 

— 00 00 

Va,at) 
4J_ ••••[_ L^'Zi^fz(ti)|a(ti)^il^t)dii 

where a is the parameter vector,  a.    is   the true parameter 

vector,  and L[a,Z_.]   is a likelihood function upon which a 
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parameter estimate would be based via maximum likelihood 

techniques. For a given value of a. , the curvature of the 

function of a, at the value of a , provides information on 

the ability of the filter to estimate that parameter: the 

sharper the curvature, the greater the precision.  This 

curvature is inversely related to the Cramer-Rao lower 

bound on the estimate error covariance matrix by 

E{ta - atHa - at]
T} > [-(32/3a2) A^a,^)].^ T1 

The ambiguity function value A. (a/a.) for any a 

and a. can be calculated from the output of a conventional 

nonadaptive Kaiman filter sensitivity analysis (20:97-99) 

in which the "truth model" is identical to the model upon 

which the Kaiman filter is based, except that they are 

based on a  and a, respectively.  The ambiguity function 

is then given by 

i 
A. (a,a.) =   I  [m/2 ln(27r) - 1/2 ln[|A(t.;a|] 
1   z j=i-N+l J 

- 1/2 tr{A'1(t.;a) [H(t.)Pe(t.";a ,a)H
T(t.)+R(t.)]}] 

- n/2  ln(2Tr)   -   1/2  ln[ |p (t/ial ] 

- 1/2  tr[P':L(ti
+;a)Pe(ti

+;at,a)] (11-25) 
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.v;^     where, 

Ait^a)   = [H(ti)P(ti";a)HT(ti) + R^)]-1 

for the Kaiman filter based on a, 

and P (t.~;a.,a) is the covariance matrix of the error 
e i —t — 
between the state estimate of the Kaiman filter 
based on a and the states of the true system based 
on a. / where "-" or "+" denotes before or after 
incorporation of the i"1 measurement. 

"m" is the number of measurements. 

"n" is the number of states. 

The terms are summed over the most recent N sample times 

(20:98); however, here N is set equal to one.  This reduces 

the size of the fluctuations in the value of A.(a/a ). 

Consequently, this flattens the surface of the plot of the 

ambiguity function plotted as a function of the parameter a. 

The main benefit of setting N = 1 is that this significantly 

reduces the number of computations. 

Filios encountered numerical difficulties while 

evaluating the ambiguity function (3:64). The covariance 

matrix at time t.ä was ill conditioned. Therefore, it was 

impossible to compute the ambiguity function as described 

in Equation (11-25).  The numerical difficulties were over- 

come by approximating the expressions for the probability 

weighting factors (Equation 11-14)) and the ambiguity 

function (Equation 11-25)).  Equation (11-14) is approxi- 

mated as 

.vj^ fj(z(ti)) = exp[-(l/2)r.T(ti)Ar
1(ti)r(ti)] 
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This is no longer a true density function because the 

scale factor is incorrect; however, because of the denomi- 

nator in Equation (11-13), the probability weightings are 

still correct in the sense that they add to one (3:65). 

If the determinants of the A matrices of the elemental 

filters are expected to be approximately equal in magni- 

tude, in the absence of numerical problems, the relative 

magnitudes of the value of the eunbiguity functions will 

not be significantly altered (3:65). Equation (11-25) was 

approximated by removing the terms containing the deter- 

minants of P(t. ) and A.  Equation (11-25) becomes 

Ai^'at) 
= m/2 ln(27r) - n/2 ln(27r) 

- 1/2 tr{A"1(ti;a) [H(ti)Pe(ti~;at,a)HT(ti)+R(ti)]} 

- 1/2 tr{P"1(ti
+;a)Pe(ti

+;at,a)} (11-26) 

«I m 

This is a reasonable approximation since the determinants 

of P(t. ) and A will have a minimal effect on the ambiguity 

function, since its primary sensitivity is in the functions 

that are being preserved (3:66).  It was not known whether 

numerical difficulties will be encountered with the model 

being used in this thesis effort.  However, since the 

approximation would not significantly alter the outcome of 

the ambiguity function analysis, the decision was made to 

incorporate it to take advantage of the smaller computa- 

tional load. 
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I # II.6.       Summary 

This chapter developed algorithms necessary for 

implementation of the full-scale and moving bank multiple 

model adaptive estimator and appropriate adaptive controller 

based on this type of estimation.     The moving bank MMAE is 

expected to yield significant computation savings over the 

full-scale MMAE.     The ambiguity functions analysis was 

also developed.    Ambiguity functions are expected to give 

insight into the parameters that need adaptive estimation 

and into the appropriate levels of discretization of the 

parameter  space to perform such estimation. 

m 
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III.  Rotating Two-bay Truss Model 

111.1. Introduction 

This chapter develops the system equations for the 

rotating two-bay truss model of a flexible space structure. 

The structure consists of a truss that rotates around a 

fixed point, thereby incorporating both rigid body rotation 

and bending mode dynamics.  The differential equations 

describing the equations of motions are developed and then 

transformed into modal coordinates. The actual physical 

structure of the two-bay truss is discussed, as is the 

finite element analysis used to obtain the mass and stiff- 

ness matrices which describe the rotating two-bay truss. 

The need for order reduction and the order reduction tech- 

nique employed in this thesis is also developed. 

111.2. Second Order and State 
Space Form Models 

The general second-order differential equations 

which describe the forced vibration of a large space struc- 

ture with active controls and n frequency modes can be 

written as (16; 30): 

Mr(t) = Cr(t) + Kr(t) = F^^t) + F2(t)    (III-l) 
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where, 

M - constant nxn mass matrix 

C - constant nxn damping matrix 

K - constant nxn stiffness matrix 

r(t)   - vector representing structure's physical 
coordinates 

F-tU/t)   - control input 

F2(t)   - disturbances and unmodeled control inputs 

The control system is assumed to consist of a set 

of discrete actuators.    The external disturbances and 

unmodeled control inputs are represented by white noise, 

thus producing: 

Mr(t)   + Cr(t)   + Kr(t)   = -bu(t)   - gw (III-2) 

where  "_" denotes a vector stochastic random process and: 

u(t)   - vector of length m representing actuator 
input, 

b - nxm matrix identifying position and relation- 
ship between actuators and controlled vari- 
ables   (16), 

w - vector of length r representing dynamic 
driving noise,  where r is the number of noise 
inputs, 

g - nxr matrix identifying position and rela- 
tionships between dynamic driving noise and 
controlled variables. 

The  state representation of Equation   (III-2)   can be 

written as: 

x  = Ax  + Bu + Gw (III-3) 
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where, 

x = 
r 

r 
x = 

2nxl 

r 

r 
•- "* -J 2nxl 

(III-4) 

and the open-loop plant matrix A,   the control matrix B, 

and the noise matrix G are given by: 

A = 
-M'-'-K   -M"1C 

B = 

2nx2n 
■M"1b 

-J 2nxm 

G = -1 
-M    g 

(III-5) 

-• 2nxm 

It is assumed that the noise can be represented as inputs 

that enter the  system at the same place as the actuators 

(b matrix = g matrix) .    Measurements are assumed available 

from position and velocity sensors which are co-located for 

simplicity.    Accelerometer measurements are not used 

because this would increase the number of states in the 

model and it is not clear that this additional complexity 

would aid in evaluating the moving-bank MMAE.     It is assumed 

that the measurements are noise corrupted due either to 

deficiencies in  the model of the sensor or some actual 

external measurement noise.    The measurements are modeled 

as: 
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z = 
H    0 

0    H' 
x + v (III-6) 

px2n 

where p is the number of measurements, v is an uncertain 

measurement disturbance of dimension p and modeled as a 

white noise (19:114), H is the position measurement matrix, 

and H' is the velocity measurement matrix.  The velocity and 

position measurement matrices are identical because of 

co-location of the velocity and position sensors; therefore, 

both measurement matrices will be referred to as the H 

matrix. 

III.3. Modal Analysis 

Modal analysis is used to transform the system into 

a set of independent equations by transforming the system 

from physical coordinates to modal coordinates.  In order 

to achieve decoupling, the damping matrix must be assumed 

to be a linear combination of the mass and stiffness 

matrices (16) : 

C = aK + ßM (III-7) 

The modal coordinates are related to the physical 

coordinates by 

r = T fi (III-8) 
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where £ is as defined previously and n represents the modal 

coordinates. T is an nxn matrix of eigenvectors and is the 

solution to   (lb;   25;   30;   31): 

w MT =  KT (III-9) 

The values of w which solve Equation (III-9) are natural 

or modal frequencies (8:66). Substituting Equation (HI-8) 

into Equation (III-3) gives 

x1 = A'x' + B'u + G'w (111-10) 

where x*   is now defined as: 

x'  = *■ = 

2nxl 

n 

n 
dii-ii) 

2nxl 

and the open loop plant matrix A',   the control matrix B1, 

and the noise matrix G'  are: 

A'  = 
•T~ M'^T 

B'   = 
•T"^"^ 

•T" M~ CT 

G'   = 

2nx2n 

-T"^"^ 
(111-12) 

# 
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& >:-• 

The A' matrix  is also of the form   (30;   31): 

A'  = 
[-w^] [-2^.] 

(111-13) 

J 2nx2n 

where each of the four partitions are nxn dimensional and 

diagonal.  The measurements become: 

2  = 
HT 

0 

0 

HT 
x' + v 

The formulation of the system in modal coordinates 

allows some assumptions concerning structural damping  (16). 

It is assumed that uniform damping exists  throughout the 

structure.    The level  of structural damping is determined 

by selecting a value for the damping coefficients  (5.)   and 

substituting this value  into Equation   (111-13).     The par- 

ticular value of the damping coefficient has no effect on 

the calculation of w.   since it is the natural or modal fre- 
1 

quency. The assumption simplifies the determination of 

structural damping and allows a better physical insight 

into formulating the problem than does the selection of 

values for a and 3 as shown in Equation (III-7) . The damp- 

ing coefficient of ^ = 0.005 is chosen for implementation 

because it is characteristic of damping associated with 

large  space structures   (16;   22). 
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III.4.    Two-bay Truss 

111.4.1. Introduction.    This section describes 

the physical  structure of the tw    ;  ly truss rotating about 

a  fixed point.     The physical dimensions of  the model, 

analysis used to develop the two-bay truss model,   sensors 

and actuators,  and the physical parameter variations of 

the model are discussed. 

111.4.2. Background.    A fixed two-bay truss was 

originally developed to  study the effects of structural 

optimization on optimal control design   (30) ;   see Figure 

III-l.    A similar model was used to research active con- 

trol laws for vibration damping   (16) .    The model was modi- 

fied to lower the structural frequencies,   thereby making 

the problem more  like a large space  structure   (16) .    This 

was done by adding non-structural masses at nodes  1-4. 

The model was further modified for this research by adding 

rigid body motion;   see Figure III-2.     The rotating two-bay 

truss approximates a  space structure that has a hub with 

appendages extending from the structure.     The mass of the 

hub  is large relative  to the mass of the appendage.    The 

hub is then rotated to point the appendage  in a commanded 

direction. 

The rigid body motion is established by adding a 

point   (node  7)   that remains fixed while  the  two-bay truss 

is  free to rotate about this point in the x-y plane;   see 
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Figure III-2.    The truss is connected to this point using 

rods having radii that are large relative to the rods used 

to construct the two-bay truss.    Making the rods large 

makes a very "stiff"  link between the truss and node  7. 

This introduces high frequency modes into the structure but 

keeps  the lower modal frequencies similar to the case where 

the truss is fixed. 

III.4.3.     Two-bay Truss Construction.     The  struc- 

ture consists of 13 rods which are assumed to be constructed 
7 

of aluminum, having a modulus of elasticity of 10    psi and 
3 

weight den.ixty of   .lib/in    (30).    The cross-sectional areas 

of each member shown in Figure III-2 are given in Table III-l, 

TABLE III-l 

STRUCTURAL MEMBER'S   CROSS-SECTIONAL AREAS 

Member Area   (in  ) Member Area (in ) 

a 
b 
c 
d 
e 
f 
g 

.00321 

.00100 

.00321 

.01049 

.00100 

.01049 

.00328 

h 
i 
j 
k 
1 
m 

.00328 

.00439 

.00439 

.20000 

.20000 

.20000 

The cross-sectional areas of rods a-j were calculated by 

optimizing the weight of  the  structure  shown  in Figure III-l. 

First,  a non-optimal  structure was constructed with all rods 

having  identical cross-sectional areas.     A second  structure 
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was then calculated with its weight minimized with respect 

to the constraint that the fundamental frequency remain 

unchanged. Rods k-m are used to make the "stiff" link 

between node 7 and the two-bay truss. The area was arbi- 

trarily selected to be large relative to the area of other 

rods in order to achieve this stiffness. 
2 

Non-structural masses with a mass of 1.294 lb-sec / 

in, are located at positions 1, 2, 3 and 4 as shown in 

Figure III-2. The non-structural mass is very large com- 

pared to the structural mass but this is necessary to 

achieve the low frequencies associated with large space 

structures (16).  The actual value of the non-structural 

mass was selected using an optimization technique (31) 

which found the mass necessary to attain a frequency of 0.5 

Hz in the lowest mode for the fixed two-bay truss (16) . 

The mass and stiffness matrices, describing the 

system model, were obtained using finite element analysis 

(31).  Finite element analysis models a structure as con- 

sisting of a finite number of nodes connected by elements. 

The program has the capability to use a number of different 

elements, but this research uses rods which are described 

by cross-sectional area, modulus of elasticity, and weight 

density.  The finite element program produces mass and 

stiffness matrices with dimension equal to the number of 

degrees of freedom (DOF) associated with the model.  Each 

row of the mass and stiffness matrix is associated with a 
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specific node and DOF.  For the two-bay truss shown in 

Figure III-2, row 1 of each mass and stiffness matrix is 

associated with the x-axis DOF of node 1. Each node has 

three translational DOF.  Only planar motion is being con- 

sidered; therefore, the nodes are modeled with only two DOF. 

For this problem, node 7 was fixed. Therefore, all three 

DOF associated with this node are eliminated, thereby 

reducing the dimensionality of the mass and stiffness 

matrices to 12 states and thus eventually yielding a 24- 

state model. The mass and stiffness matrices for the spe- 

cifications previously discussed, are listed in Appendix B. 

These are the nominal matrices from which parameter varia- 

tions are considered. 

III.4.4. Sensors and Actuators. Velocity and 

position sensors are assumed co-located at nodes 1 and 2 

as shown in Figure III-2.  Two additional sensors for 

angular displacement and velocity are co-located on the hub 

(node 7) of the two-bay truss. Actuators are placed at 

nodes 1 and 2 as shown in Figure III-2. An additional 

actuator is located on the hub. 

The states corresponding to velocity and position 

are directly available in physical variable formulation 

(Equations III-3, III-4, III-5) while the states corres- 

ponding to angular displacement and velocity are directly 

available in modal formulation (Equations I11-10, III-ll, 
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111-12,   111-14) .    The H and b matrices are constructed by 

calculating  separate matrices  in the different state  space 

formulations.    These matrices are augmented after the 

physical variable formulations have been transformed into 

modal coordinates. 

IP 

III.4.5. Physical System Parameter Uncertainty. 

The purpose of this thesis is to test the moving-bank 

multiple model adaptive estimation and control algorithms. 

Therefore, the model must have parameter uncertainty which 

allows adaptive estimation to be applied. A 10 by 10 point 

parameter space is created by considering two physically 

motivated parameter variations.  First it is assumed that 

the four n on-structural masses vary -50 percent to +40 per- 

cent from the nominal value in discrete steps of 10 percent. 

The variation is assymmetric simply to allow the 10 point 

parameter variation. This weight variation can be physi- 

cally related to fuel being expended from or added to a 

tank or weight being shifted to a different section (other 

than the two-bay truss) of the space structure.  Secondly, 

the entire stiffness matrix is allowed to vary -20 percent 

to +16 percent from the nominal value in discrete steps 

of 4 percent.  This can be associated with structural 

fatigue in the rods or a failure of a member within the 

structure itself. The realism of the magnitude of these 

parameter variations has not been rigorously investigated; 
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however,   the variation is necessary to produce the changes 

in the system model of a magnitude as to require adaptive 

estimation and control.    Both the mass and stiffness vari- 

ation  is uniform as there is no  strong evidence that 

introducing a nonlinear variation scale will improve moving- 

bank MMAE performance. 

(£7 

III.5.     State Reduction 

III.5.1.    Introduction.     The mass and stiffness 

matrices were previously  shown to be of dimension 12.     This 

produces a  system model that has  24   states,  which is much 

larger than desired for this thesis effort and for a prac- 

tical control application.     This  section develops a method 

of order reduction referred to as singular perturbations 

(9;   10;   16;   21:219).     The method of  singular perturbations 

assumes  that faster modes reach  steady state essentially 

instantaneously.    This section develops the method of 

singular perturbations and then discusses the magnitude of 

the order reduction. 

III.5.2.    Development.     The deterministic  system is 

reformulated as follows: 

^1 

^2 

11 

k21 

12 *1 + "Bi 

22 f2_ ?l 
u (111-15) 

z  =   [Hj^     H2]   x (111-16) 
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# 
The x, states are to be retained and A,, and A22 are 

square matrices. If only high frequency modes are elimi- 

nated, steady state is assumed to be reached instantaneously 

in these modes (i- = Oj .  The x2 states are then expressed 

in terms of the x, states: 

x2 = 0 = &21-1  + A22-2 + B2- (111-17) 

-2 = "A22(A21-1 ■*■ B2-, (111-18) 

Substituting for x2 gives 

-1 = Ar^l + Br- - = HA + Drii (111-19) 

where: 

Ar = (A11 " A12A22A21) (III-19a) 

Br = (B1 - A12A^B2) (III-19b) 

Hr = (H1 - H2A^A21) (III-19C) 

Dr = (-H2A22B2) (III~19d) 

Note that the D matrix did not exist before order reduc- 

tion.  It is a direct-feed term which was not in the 

unreduced system (16). 

This order reduction technique is now applied to a 

system of the form of Equation (111-10).  Reordering 
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Equation   (111-13)   into the reduced-order form produces 

Equation   (II1-20),  where the upper partition contains the 

modes to be retained while the lower partition contains 

those assumed to reach steady state instantaneously. 

A = 
[-wj] [-2;^] 

[-w*] [-2c2w2] 

(111-20) 

2nx2n 

Comparing Equation   (111-20)   to Equation   (111-15)   shows 

that the partitions A,. and A21 are  zero.    Substituting 

this result into Equation   (111-19)   yields: 

A    = A,, r 11 (III-21a) 

B    = B, r 1 

H    = H. r 1 

Dr   =   (-H2A^B2) 

(III-21b) 

(III-21c) 

(III-21d) 

fty 'V. 

D    is the only term in Equation   (111-19)   that is dependent 

upon terms associated with the  states assumed to reach 

steady  state  instantaneously.     The  other reduced-order 

matrices are calculated simply by truncating those states 

associated with x-. 
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Calculation of D can be greatly simplified by 

examining the form of Equation (III-21d). 

form to Equation (III-6): 

H2 is similar in 

H2- 

H 2 

0 H2 

(111-22) 

H    represents measurement of the unmodeled position states 

while H'  represents measurement of  the unmodeled velocity 

states.     In Equation  (III-6) ,  it was assumed that the 

position and velocity measurement matrices were identical 

because of co-located position"and velocity sensors.    The 

same assumption can be made  in Equation   (111-22);  however, 

the distinction between the.-.velocity and measurement 

matrices will be retained since  it is  shown in Equation 

(111-26)   to be  important irt the general development of the 

reduced order matrices.    As was shown in Equation   (I11-20), 

A22  is a  square matrix of  the form: 

22 r      2. [-w2] [-2C2W2] 
(111-23) 

\K>) 

where each of  the four partitions  is a  square,  diagonal 

matrix whose dimension is dependent upon  the number of 

states to be  retained.     Its inverse  is   (8): 
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I 
,-1 

[-W2]"1[2C2w2] r  2,-1 [-w2] 
(111-24) 

B2 is similar in form to the matrix B described in Equation 

(III-5) : 

B2 = 

0 

b' 
(111-25) 

.-1. where b' represents the rows of the matrix product -M b 

corresponding to the unmodeled states.  Evaluation of 

Equation (III-21d) yields: 

n = r 

H2[-w^]"
1b• 

(111-26) 

pxl 

where p is the number of measurements.  Only the position 

measurements are affected since the lower portion is zero. 

The D matrix is only dependent upon the position portion 

of the measurement matrix and not the velocity measurement 

matrix. The inverse of w-- is easily calculated since the 

matrix is diagonal. An example of detailed system matrix 

development and order reduction is listed in Appendix B. 

III.5.3.  Order Reduction Selection.  The number of 

modes retained was determined by examination of the eigen- 

values and frequencies of the unreduced system (Table III-2). 

The frequencies can be distinctly divided into several 

56 



m TABLE  III-2 

EIGENVALUES AND FREQUENCIES 

Mode No. Eigenvalues* Frequencies 

1 0.0000 0.0000 
2 8.8922 1.4152 
3 22.5492 3.5888 
4 29.5444 4.7021 
5 31.1519 4.9580 
6 32.8002 5.2203 
7 54.3893 8.6563 
8 58.1592 9.2563 
9 985.9204 156.9141 

10 9018.8987 1435,4023 
11 11515.9941 1832.8274 
12 19956.5072 3176.1768 

* The eigenvalues are for an undamped system 
U = 0). 

groups of closely spaced frequencies.     For example,  modes 

4,   5,  and 6 are clearly one set of closely spaced frequen- 

cies.    When reducing the order of  system by the method of 

singular perturbations,   it is desirable not to make the 

reduction at a point which will divide a group of "closely 

spaced"  frequencies   (22).    At the same  time,   a sufficient 

number of frequencies must be retained  in order to do an 

adequate  job of  estimation and control.     An obvious  selec- 

tion of a reduced order model is  to retain the first three 

modes,   resulting in a  six-state system.     Keeping any more 

modes will result in  the requirement to retain  the  frequency 

group at modes at 4,   5,   and 6,  which would result in a much 

larger  12-state  system. 
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•£>.     III. 5. Summary 

A^\. 

w 

This chapter developed the system equations for the 

two-bay truss with rigid body motion.  The mathematical 

model is dependent upon physical parameters which, in 

reality, vary from those used in the mathematical model. 

The moving-bank MMAE will be used to estimate both the 

reduced order system states and the varying  parameters of 

the physical system. 
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IV.     Simulation   (3;   6) 

IV.1.       Introduction 

Evaluation of the performance of the moving-bank 

multiple model adaptive estimator/controller for this 

application requires  simulating actual space structure move- 

ment and estimator/controller operation.     The computer simu- 

lation provides a Monte Carlo and sensitivity analysis 

(using ambiguity functions)   of the estimator/controller. 

This chapter provides background on the Monte Carlo simula- 

tion, briefly outlines the computer software,  aid then dis- 

cusses the simulation plan for analyzing the performance of 

f^P" the estimator design logics and the moving-bank algorithms. 

IV.2.      Monte Carlo Analysis 

It is desired  to obtain statistical   information  on 

the estimator/controller's performance.     One method of 

generating these statistics is through the use of a Monte 

Carlo study.     This  involves obtaining many  samples of the 

error process  through simulation and then using this data 

to approximate  the process  statistics   (19:329). 

The true  jystem model under consideration can be 

described by a  linear time-invariant difference equation: 

m 
^(ti+1)   =  Mt^t.^t.)    + Bd(ti)u(ti)   +   Gd(ti)wd(ti) 

(IV-1) 
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}ÖJJ6     (See Equation II-l) for a complete definition of terms.) 

B. and G, are the discrete-time equivalents of the B and G a     a 

matrices given in Equation (III-5). It is assumed that the 

noise input matrix is identical to the control input matrix, 

therefore (19:171), 

t. 

Bd = Gd = I    *(t, ,T)B dt (IV-2) 

' ^'i-l 

Noise corrupted measurements are provided to the estimator 

in the form of: 

zit^ = HxCt^ + vU^ (IV-3) 

where H is the measurement matrix and v(t.) is a discrete 

time, zero-mean, white Gaussian measurement noise with 

covariance matrix R.  Matrices fc, B,, G,, and H are func- 

tions of the true parameter vector a : 

at = [M, K]T 

where, M and K are the mass and stiffness parameters, 

respectively and are discussed in Section III.4. 

The simulation is accomplished for a sufficient 

number of runs so that the computed sample means and vari- 

ances of the random variables of interest are good approxi- 

mations to true ensemble averages.  The number of simula- 

tion runb selected is 10 and this is determined by 
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observation of the sample statistics as  the number of Monte 

Carlo runs is increased   (3:52). 

Figure IV-1 illustrates the simulation for obtain- 

ing individual samples of the Monte Carlo analysis (3:53). 

The variables not previously defined are: 

x.(t.)   =  "truth model"  states -t    i 

x(t.)     = estimate of system states 

a(t.)     = estimate of uncertain parameter vector 

e  (t.)   = error in the parameter estimate 

ea(t.)   = a.(t.)   - ä(t.) 

e  (t.)   = error in the system state estimate 

e   (t.)   = Tx4.(t.)   - x(t.) —xi —t    i —    i 

where, T is a n x n matrix to make the dimensions com- 

patible since the estimate is typically of lesser dimen- 

sion than the "truth model" states. 

The sample mean of the variables of interest is 

computed as (3:53; 6:46; 19:129): 

EIVV
1
 ^"ex

(ti' = '1/N> J^xx'V ,IV-4' 

where, 

N = total number of simulation runs 

e v(t.) = value of e (t.) during the kth simulation run 
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The sample covariance ofe (t.) is computed as (3:54; 

6:47; 19:130): 

EU^U.) - E{|x(ti)}][%(ti) - Ei^it.)}]*}  Z  P^Ct.) t 

[1/(N-1)] ^ ^(t^e^^t.) - [N/(N-1)] M^t^^t.) 

(IV-5) 

When evaluating the estimator alone, the feedback 

controller in Figure IV-1 is replaced by a dither signal 

with a frequency and amplitude that is determined by trial 

and error.  It has been shown that a dither signal can be 

used to excite the system model and enhance parameter iden- 

tification (6:50,58-59; 20:135,136; 21:229). 

j&ii* The error in the state estimate and the err-r in 

the parameter estimate are useful in evaluating the perform- 

ance of the estimator. The error in the state estimate 

gives the best means of comparing the estimator to other 

types of estimators while the error in the parameter esti- 

mate lends insight into the accuracy of a parameter esti- 

mate that may be fed to an adaptive controller and provides 

a means of evaluating various move, contract, and expand 

algorithms (3:54). 

When evaluating the estimator/controller combina- 

tion it is more appropriate to examine the statistics of 

the true state values.  In this thesis effort, the control 
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objective is to quell any oscillations in the two-bay 

truss structure and to "point" the two-bay truss in a com- 

manded direction. It is important to examine the magni- 

tude of the control inputs in order to detect unreasonable 

commanded control levels.  Lynch (16) in his research 

with a fixed two-bay truss (see (Section III.4.2) limited 

the magnitude of the force of an individual actuator to 

100 lbs. Although this limit is not implemented in this 

thesis, it is used as a general guideline as to a reason- 

able range of actuator activity. 

IV.3.   Software Description (3:55-59) 

IV.3.1. Introduction»  The analysis of the moving- 

bank estimator/controller required the development of four 

computer programs. Each of these programs is a modifica- 

tion of programs developed by Hentz and Filios (3; 6) . 

For a more detailed description of the following programs, 

the reader is referred to Filios (3) . The first program 

is a preprocessor which creates a parameter space that 

is utilized in the Monte Carlo simulation and ambiguity 

functions analysis (see Section II.5). The second program 

simulates the moving-bank multiple model adaptive estimator 

and performs Monte Carol simulation runs and generates 

data for each run.  This program is also modified to pro- 

duce Monte Carlo runs of individual elemental filters. 

The third program is a postprocessor that computes the 

64 

»iUSilftkVAVWyKUKVKV^^ 



>/. means and variances of variables of interest and then 

generates the plots of statistics for the Monte Carlo 

simulation. The fourth program computes the ambiguity 

functions and generates their plots. 

IV.3.2. Preprocessor.  The preprocessor computes 

the discretized, reduced order, system matrices («t, B,, 

G,, H, D in Equations (II-l) and (111-19)) for each param- 

eter point within the parameter space, Kaiman filter and 

LQ controller gains, and information needed for the 

ambiguity functions analysis (see Section II.5). An input 

file allows the state and control weighting matrices, 

dynamic driving noise, measurement noise, as well as the 

time increment for the discrete system to be varied.  This 

input file also contains the mass and stiffness matrices 

and two vectors which specify the mass and stiffness vari- 

ation.  The mass and stiffness matrices are used to deter- 

mine a 24-state system (see Equation III-4) which is then 

reduced to the number of states specified (see Section 

III.5) . 

IV.3.3. Primary Processor.  The primary processor 

performs the Monte Carlo simulations.  The program con- 

sists of an executive subroutine which calls several sub- 

routines.  For each sample period, the true system and the 

filters currently implemented in the moving bank are 

propagated forward from the most recent sample time.  A 
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noise-corrupted measurement is  then made of the true sys- 

c jn and the filters of the moving bank are updated.     The 

program then calculates the necessary control inputs and 

makes decisions ou whether to move,   expand,  or contract 

the bank.    After each sample period is complete,   the values 

of the variables of interest are written to a data file. 

The inputs to the primary processor describe the 

parameter space   (obtained from the preprocessor)   and true 

system parameters,  and specify the move/contract/expand 

algorithms to be implemented,   the associated thresholds, 

initial probability weightings for the filters in the 

moving bank,   and initial filter states.     The output of the 

primary processor is a data file for each variable of 

interest   (state estimate,  actual  state values,  control 

inputs)   covering all of the simulation runs,  and a more 

detailed print file covering just the first Monte Carlo run. 

The print file lists the exact filters implemented in the 

moving bank and the variables which affect the decision 

algorithms. 

IV.3.4.     Postprocessor.     The postprocessor takes 

the variable data files obtained from the primary processor 

and calculates the sample means and variances from t    to o 

tf. Plots are then generated of the time histories of the 

means of each variable ± la, where a is the standard 

deviation.  The postprocessor is run for each data file 

generated by the primary processor. 
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IV.3.5.    Ambiguity Functions Analysis.     The 

ambiguity functions analysis involves two programs.     The 

first evaluates the ambiguity function for each point in 

the parameter space   (see Chapter II for a full discussion 

of ambiguity functions)   and writes  this information   (a 

10x10 matrix)   to a file.    A dither signal is used to 

enhance the difference between filter models.    The input 

file to this program specifies the truth model,  number of 

Monte Carlo runs,  as well as the time length of the simu- 

lation.     The system matrices are obtained from the same 

file generated by the preprocessor for the primary pro- 

cessor.     The second program reads  the information from a 

file and then generates a three-dimensional plot of the 

ambiguity function values versus  location in the parameter 

space   (see Figure V-l) . 

IV.4.       Simulation Plan 

IV.4.1.     Introduction.     The simulation plan 

involves three phases.     First,   the ambiguity functions 

analysis is performed to establish the suitability of the 

model for adaptive estimation and to lend insight into the 

appropriate degree of parameter variation of the two-bay 

truss.     The second phase evaluates  the performance of only 

the adaptive estimator.     The purpose is  to determine which 

decision  logic provides  the  "best"   estimation performance. 

The final phase incorporates  several possible controller 
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Ofäk structures  in order to evaluate the different adaptive 
W 

estimation/control algorithms. 

The  "truth model"  for all  simulations is of the 

same dimension as the internal filter model   (see Section 

III.5.3).     The system is driven by  zero-mean white noise 

and a dither signal that is determined by trial and error. 

The strength of  this white noise as well as the measurement 

noise is determined by trial and error with the criteria 

that the noise add a reasonable amount of uncertainty to 

the system during a sample period   (see Appendix B for more 

discussion of  the selection of noise strengths). 

IV.4.2.     Ambiguity Functions Analysis.    The 

ambiguity  functions analysis is generated for non-adaptive 

estimators based on a representative sample of parameter 

sets,   to determine what parameters can and should be esti- 

mated.     Relatively low sensitivity  of filter performance 

to a parameter change makes identification of the parameter 

difficult and removes need for adaptivity,   since all 

filters within  the parameter range can accurately estimate 

the states   (3:70). 

Once  the model is determined  to be appropriate for 

adaptive estimation,   the rmbiguity  function analysis also 

lends valuable  insight into the proper  level of discretiza- 

tion of  the parameter space   (3:91) .     Highly  sensitive 

ambiguity  functions establish  the need  for a  tightly 
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4& discretized parameter range,  whereas ambiguity functions 

that are less highly peaked in certain parameter direc- 

tions show that fewer parameter points are needed to span 

that particular parameter range. 

<c 

IV.4.3.  Parameter and State Estimation Study. 

The estimator is first evaluated using only movement of a 

bank at the finest level of discretization (see Figure 

II-2). The decision logics for moving (see Chapter II) 

are individually implemented in a series of simulation runs 

and then compared.  For these simulations the parameters 

are forced to (see Section 1.4.2): 

a. be constant and equal to a discretized point 

in the parameter space; or 

b. be constant but between and not equal to a 

discretized point in the parameter space; or 

c. vary, either continuously or by undergoing a 

jump value. 

The evaluation of these decision logics is based upon the 

accuracy of the state estimate and the speed with which the 

decision logic acquires the true point in the parameter 

space. Although parameter estimation is the primary 

impetus for implementation of a moving-bank MMAE, state 

estimation and ultimately controller performance, are the 

standards by which the moving-bank are judged. 
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The bank  expansion and contraction algorithms are 

evaluated by using a jump change in the uncertain parameters 

being estimated.     The change places the uncertain parameters 

outside the current range of the moving bank.     The purpose 

of the expansion algorithm is to allow the bank to respond 

more quickly to a jump change in the uncertain parameter 

than would be possible by using the bank movement alone 

(3:62).    Therefore,   the expansion algorithms are evaluated 

by comparing the results to a simulation using a jump change 

in parameters but not allowing bank expansion. 

IV.4.4.     Controller Study and Design.     The State 

and Parameter Estimation Study is used to determine the 

"best" bank motion decision logic method.     This method is 

used as the basis for a controller using the moving bank 

multiple model adaptive estimator.    A Monte Carlo analysis 

is performed on  this controller,  a multiple model adaptive 

controller,  and controller designed on a nominal value of 

the parameter vector but using the moving bank model as a 

state estimator   (see Section III.4).     Two benchmark con- 

trollers are also investigated through Monte Carlo analysis: 

a single controller with artificial knowledge of the true 

parameter set and a robust,  single fixed-gain controller 

(see Section II.4). 
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IV. 5.  Summary 

The simulations for the moving bank estimator/ 

controller evaluation have Leen described in this chapter. 

The Monte Carlo simulation frr performance assessment, the 

associated software, and the simulation plan have been dis- 

cussed.  The results of these simulations are discussed 

in the following chapter. 
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V. Results 

V.l. Introduction 

The results of the ambiguity functions analysis 

and the Monte Carlo simulations are presented. The goal 

of the ambiguity functions analysis is to determine the 

suitability of the two-bay truss for application of the 

moving-bank multiple model adaptive estimator. This andly­

sis produces no conclusive results, but sbnilar information 

is in fact obtained from Monte Carlo analysis of individual 

filters within the parameter space. The Monte Carlo analy­

sis indicates a significant change in estimator performance 

over the range of the parameter variation, and thus pro­

vides insight into the usefulness of adaptation for this 

application. The purpose of the Monte Carlo analysis of 

the moving-bank MMAE is to evaluate the move, expand, and 

contract algorithms developed in Chapter III and to investi­

gate the effectiveness of the moving-bank MMAE as a con­

troller. Results indicate that the moving bank provides 

an increase in performance over a single filter not given 

knowledge of the true parameter vector; however, the 

increase in performance is due more to the performance of 

the Bayesian multiple model estimation algorithm rather 

than that of any moving-bank decision logics. It is found 

that a fixed bank does an excellent job of estimation and 
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control and performs nearly as well as a filter given 

artificial knowledge of the true parameter variation. 

Please note that this chapter continually refers 

to parameter points   (i.e.,  parameter point   (5,5)).    The 

first number corresponds to variation in the non- 

structural mass  of the rotating two-bay  truss while the 

second number corresponds to variation in the stiffness 

matrix.     See Section III.4.5   for   ?; complete discussion. 

V.2. Ambiguity Functions Analysis 

The ambiguity functions analysis experiences no 

apparent numerical problems but does not produce clear 

results.     The analysis is done using both covariance and 

Monte Carlo analyses  to obtain the necessary  error covari- 

ance matrices   (see Chapter II).    When Monte Carlo analysis 

is used,   the results  indicate a need for adaptive estima- 

tion since the ambiguity function values experience rela- 

tively large variations   (see Figure V-l).     This indicates 

a need  for adaptive estimation;   however,   it was  found 

through repeated ambiguity function evaluation for indi- 

vidual choices of parameter values in  the "truth" and 

"filter"  models,   that  the computation of  the ambiguity 

functions did not converge despite a very large number 

of Monte Carlo runs.     Table V-l  contains  the ambiguity 

function evaluation  for five ambiguity  function runs  for 

the case of  the implemented filter being identical to the 

truth model.     The number of Monte Carlo runs  is set at 10 
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Fig.   V-l.     Ambiguity Function Plot;   Parameter at 
Mass = 1,  Stiffness =  5 
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TABLE V-l 

DIFFERENT AMBIGUITY FUNCTION  EVALUATIONS 
FOR THE  SAME CONDITIONS 

0.55126 
2.23278 
1.68001 
1.85798 
1.51977 

and each of the Monte Carlo runs ran for 10  seconds at a 

time interval of 0.05 seconds.    Figure V-l plots the 

ambiguity functions for the true parameter point   (indicated 

by arrow in Figure V-l)   being located at   (5r5)   in the 

parameter space.     The magnitude of the variation of the 

ambiguity functions in Table V-l as compared  to the magni- 

tude scale in Figure V-l  indicates inconclusive computa- 

tion of the ambiguity functions.    Better results could not 

be obtained by increasing  the number of Monte Carlo runs. 

More repeatable results are obtained using covari- 

ance analysis,  but is  is  suspected that numerical diffi- 

culties do occur.     Despite a very large number of propaga- 

tion cycles,   the  error variances did not converge and in 

fact diverged.     Through Monte Carlo analysis  of  the indi- 

vidual filters,   it is shown that the filters are stable 

(see Section V.3).     Results can be obtained by arbitrarily 

limiting the number of  sample periods to 50.     The ambiguity 

functions are plotted  for  several points  in  the parameter 
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^^^ space and indicated erroneously that all  filters  in the 

space would do equally well  in obtaining  state estimates. 

One possible reason for the inconclusive ambiguity 

function analysis  is the set of approximations made in the 

development of the ambiguity functions   (see Section II.5). 

In Equation   (11-25) ,  N was  set equal to one.     This greatly 

reduced the number and complexity of computer operations. 

The result is a reduction in the fluctuation in  the ambigu- 

ity  function,  but this may have produced a numerically 

inaccurate algorithm when implemented on a finite word- 

length computer. 

•■is* mm 

V.3.        Monte Carlo Analysis of 
Individual Filters 

^'' Monte Carlo analysis of individual  filters provides 

the information that is desired from ambiguity functions. 

It shows a significant performance difference between 

filters based upon different points in the parameter space. 

Simulations are conducted  for various filters  in  the 

parameter space,   against a  truth model based on some arbi- 

trary point in the parameter space.    A dither signal with 

a magnitude of  5  and  frequency of 30  rad/sec  is used to 

excite the system.     The magnitude and frequency are deter- 

mined by trial and error with the criteria  that the dither 

signal cause significant differences in the state estima- 

tion performance between elemental  filters.     Appendix C 

JwM contains state error  statistics plots  for  the case  of the 
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truth model being based on the parameter point 5,5   (nominal 

values of non-structural mass and stiffness matrix).     Simu- 

lation runs are made for filters corresponding to each 

adjacent point in the parameter space at the finest level 

of discretization   (see Figure II-2b) .     These plots  show a 

significant degradation in estimation performance when the 

filter model differed from the truth model.     The plots also 

indicate that the mass variation cause more degradation in 

performance than did the variation in the stiffness 

matrices. 

The plots also  show that different combinations of 

mass and stiffness variation have varying effects on 

estimation performance.     Figure C-6 is for a filter based 

on the point   (6,6)   in  the parameter space,  which is a 10 

percent increase in  the non-structural mass and a 4  percent 

increase in the stiffness matrix   (see Section III.4.5). 

An increase in the non-structural mas?  lowers  the modal 

frequencies of the filter model, while an increase in the 

stiffness matrix pushes  the filter frequencies higher. 

One would expect a cancelling effect and estimation per- 

formance that is better  than parameter points   (5,6)   and 

(6,5),  yet worse than  for  the truth model   (parameter point 

(5,5)).    Figures C-l,   C-2,   C-5,  and C-6   support  this  result. 

The parameter points   (6,4)   (increase in non- 

structural mass and decrease  in stiffness matrix)   and 

(4,6)    (decrease  in non-structural mass and  increase  in 
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stiffness matrix)   demonstrate  the additive effect of the 

parameter variation.     The former decreases the structural 

frequencies while the latter causes higher structural fre- 

quencies.    In both cases,   one would expect an additive 

degradation in performance.     For example,   filter   (6,4) 

should perform worse  than  filters   (6,5)   and   (5,4).     Figures 

C-4,   C-5,  and C-9  support  this  result. 

V.4. Moving-Bank MMAE 

V.4.].     Introduction.     The performance of the 

moving bank with probability monitoring is discu/ised with 

respect to parameter and state estimation.     The bank fails 

to identify a truth model parameter vector although  it was 

able  to provide good state estimation.     Expansion and 

contraction of the bank is not considered because of time 

limitations and the fact that the investigation of moving- 

bank algorithms did not lead to a logical basis for con- 

tracting or expanding the bank. 

V.4.2.     Parameter Estimation.     Investigation of 

bank movement using probability monitoring is very  incon- 

clusive.     This  is  due  to  the continual movement of  the 

bank  because of  the varying of Bayesian weightings  on  the 

elemental filters.     Table V-2  contains the filter weight- 

ings  and the location   (the center filter of  the moving- 

bank)   for the first second of a  performance evaluation of sj 

s^ü             a moving-bank initialized at its  finest discretization 5 
V^ •: 
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mt) (see Figure II-2b)   and initially centered at parameter 

point   (5,5).    The weightings vary between several  filters 

with no clear-cut tendency towards any one filter.     The 

truth model is based upon the internal model of the filter 

implemented at parameter point   (5,5).    The bank  is using 

probability monitoring with a bank move threshold of  0.25. 

The bank move threshold is arbitrarily selected since 

examination of the probability weightings   (see Table V-2) 

do not indicate a better choice.     Hentz   (6:62)   showed that 

performance increases as  the probability threshold decreases 

and that the best estimation performance is achieved with 

thresholds near zero.    With  thresholds this low,   the bank 

moves anytime the largest filter does not have the largest 

VJt., probability weightings.     The magnitude of the dither signal 

is 100 with a frequency of 30 rad/s. The reasoning for the 

increase in the magnitude of the dither signal over that of 

the Monte Carlo analysis of individual filters is presented 

in Sections V.4 and V.5. 

An attempt is made to determine trends in the move- 

ment  in  the bank.     This  is accomplished by keeping a  record 

of the parameter point about which the moving-bank  is 

centered.     The elements of a  10x10 matrix are initialized 

to zero and then one  is  added at each sample  time  to  the 

matrix  element corresponding  to  the current location  of  the 

moving bank.     Entries are  recorded from t = 1.0  to 5.0. 

Recording  is not started at  t =  0.0  in an attempt to avoid 

IAXJ 
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transient effects. Figures V-2 and V-3 show the results 

where the true parameter points are (1,10) and (10,1), 

respectively. In each of the figures, one point in the 

10x10 matrix corresponds to a 3x3 grid on the depicted 

surface.  The arrow points to the parameter location of 

the truth model. The dither signal applied has a magni- 

tude of 100 and frequency of 30 rad/s. The only informa- 

tion the figures yield is qualitative in nature. Different 

truth models do affect the movement of the bank.  In 

Figure V-2, it can be seen that the bank tends to center 

itself in the general area of the true parameter point. 

In Figure V-3, the true parameter point is changed and this 

certainty seems to "pull" the bank in the general direction 

of the new point, though not to the extent of causing the 

bank to center on the actual point (10,1). 

The continual changing of filter weightings may be 

due to "relatively" similar performance between filters. 

The weighting of each filter is dependent upon the accuracy 

of the filter prediction of the current measurement, as 

shown in Equation (II-6) .  In the absence of noise, the 

truth model would predict the next measurement perfectly. 

With noise dynamically affecting the system, the correct 

filter will have an incorrect estimate.  If the magnitude 

of the noise is great enough, a filter based upon an 

incorrect but similar model could produce an estimate 

that is as good or possibly even better.  How often an 
■ %■ 
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Fig. V-2.  Bank Location Time History; True Parameter 
at Mass = 1, Stiffness = 10 
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Fig.   V-3.     Bank Location Time History;     True Parameter 
at Mass = 10,  Stiffness = 1 
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"incorrect" filter suggests an equally or more accurate 

estimate is dependent upon the magnitude of the dynamics 

driving noi&e and measurement noise as compared to the 

differences between correct and incorrect filters, and 

upon the statistics of the dynamics driving noise and the 

measurement noise. 

V.4.3.  State Estimation.  Simulations are run for 

the case of a truth model being equivalent to the model 

implemented in one of the elemental filters in the parameter 

space. First, the case is investigated for feedback con- 

trol being a dither signal with magnitude of 5 and frequency 

cf 30 rad/sec.  This dither signal is used because results 

of the Monte Carlo analysis of individual filters (see 

Section V.3) clearly indicate that the rotating two-bay 

truss requires adaptive estimation when subject to a dither 

signal of this magnitude and frequency.  Results indicate 

that, although the individual filters vary significantly 

in performance when matched against a truth model based 

upon a different point in the parameter space for the con- 

ditions, that the Bayesian estimation algorithm produces 

a very robust state estimation algorithm.  This supports 

the use of a bank, but not necessarily a moving bank. 

Appendix D contains two sample state estimation plots which 

illustrate sample state estimation performance using proba- 

bility monitoring.  The benchmark of performance, a single 
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jögx filter given artificial knowledge of the true parameter 

is contained in Appendix C   (Figure C-l) . 

V.5. Fixed-Bank MMAE 

During the course of the moving-bank simulations/ 

the bank was often "fixed"  in order to investigate the 

trends that occurred in the weightings and to assist in 

evaluating the moving-bank MMAE.     It is  found that,  even 

if the bank does not move,  a subset of the filters within 

the bank provided increased performance and robustness over 

a single filter.     At a dither signal with a magnitude of 

5 and frequency of  30  rad/sec,   the fixed-bank algorithm did 

a good job estimating at all points in  the parameter space 

.ffi, as compared to a  single filter given artificial knowledge 

of the true parameter vector.     It was previously shown that 

significant performance degradation occurred for the case 

of individual filters at a dither signal with a magnitude 

of 5 and frequency of  30 rad/sec. 

The magnitude of the dither signal is increased  to 

100.     The performance of the estimator is still nearly 

identical to the case of a single filter given artificial 

knowledge of  the parameter.     In these initial  investigations, 

the bank  is  set at its closest discretization and centered 

at the parameter point   (5,5) .     Figure E-l  is  the simulation 

for a Monte Carlo run against a truth model based on the 

parameter point   (5,5).     Figures E-2  through E-5   (in Appen- 

X-vv dix E)   are  the simulation plots  for Monte Carlo runs 
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against several truth models which are based on parameter 

values outside the discretization of the bank. The plots 

indicate good state estimation performance at all points. 

A small decrease in performance is indicated at parameter 

point (3,7), This point corresponds to an additive 

degradation in filter performance from both parameter 

variations (see Section V.3); therefore, one would expect 

to see the most performance degradation from this point. 

The fixed-bank MMAE is also investigated at various 

discretizations.  The state estimation performance are com- 

pared at discretization levels of 1 (finest discretiza- 

tion) , 2 and 4 (coarsest discretization) and at a dither 

signal of 100 using the parameter point (3,7) as a truth 

model. Results indicate that the bank at a discretization 

level of 2 and 4 outperformed the bank at a discretization 

level of 1; see Figures E-4, E-6, and E-7.  This is par- 

ticularly evident in the error plot corresponding to the 

velocity of the second bending mode (EX(6)).  This indi- 

cates that the bank does a better job of encompassing the 

true parameter value as the discretization becomes coarser. 

V.6.   Moving-Bank and Fixed-Bank Comparison 

The moving-bank and fixed-bank estimator are com- 

pared against identical truth models.  First, the magnitude 

of the dither signal is set equal to 100 at a frequency of 

30 rad/sec. The truth model is selected at parameter point 
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(3,7)   in order to make use of previous  figures.     Simula- 

tions were conducted for the moving-bank and the fixed- 

bank at various discretizations.     The moving-bank is imple- 

mented using probability monitoring with a move threshold 

=  0.25.     The bank move threshold is arbitrarily selected 

since examination of  the probability weightings   (see 

Table V-2)   do not indicate a better choice.     Figures F-l, 

E-4, E-6,  and E-7 illustrate the results.     The plot corres- 

ponding to the velocity of the second bending mode  (EX (6)) 

most clearly illustrates differences in performance.    Per- 

formance is similar for all cases except for the case of a 

fixed bank with discretization of 1, which indicated a 

small degradation in performance.    In addition,  the moving- 

bank estimator result   (Figure F-l)   has a  "spike"  in the 

estimate of the rigid body position state at approximately 

t = 4 seconds which probably corresponds to a move in the 

wrong direction. 

Additional Monte Carlo runs are conducted against 

a  truth model based on the parameter point  (1,10)   and with 

a dither signal magnitude of 500 and frequency of 30 rad/ 

sec  (see Figures G-2,  G-3,  G-4,  and G-5).     The parameter 

point  (1,10)   and the large dither signal are chosen because 

it is desired to enhance  the identiflability of the system. 

A  significant degradation in performance occurs at all 

discretizations;   however,   it shows a clear performance 

increase in estimation performance with coarser parameter 
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discretization. The moving bank performance is similar to 

the simulation with discretization level of 4 (Figures F-2 

and F-5, respectively).  The moving-bank shows slightly 

better performance in estimating the velocity of the second 

bending mode (EX6)) while the discretized fix-bank does a 

better job of estimating the angular velocity (EX(4)). The 

reason for this pattern of performance is not obvious. 

V.7.   Controller Performance 

Controller performance (see Section II. 4 and Appen- 

dix A) is investigated for the case of only the fixed bank, 

although few results are obtained because of time con- 

stain ts. A controller using the moving bank is not investi- 

gated also because of time constraints. The system is 

excited with a dither signal of magnitude 500 and frequency 

of 30 rad/sec for 1 second.  This is done to produce a 

large oscillation in the structure on which the effects of 

active control would be obvious. Figure H-l shows the 

result of the dither signal with no control applied. For 

subsequent plots, at time = 1 second, a steady-state feed- 

back controller is used to quell the structural oscilla- 

tions induced by the dither signal and to force the angular 

position (state 1), to zero. Nominal control gains (see 

Section II. 4 and Appendix A) corresponding to parameter 

point (5,5) were used.  Figure H-2 shows the states and 

control for the case of truth model being at parameter 
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point (5,5). The control clearly damps out structural 

oscillations and also "points" the rotating two-bay truss 

by bringing the rigid body position state {X(l)) to near 

zero. The scale of the plots corresponding to the rigid 

body state is in radians.  Obviously, the control of this 

state needs to be improved. For all control simulations, 

the control of the rigid body states (X(l) and X(4) are 

nearly identical. This is expected since the modeling 

of the rigid body states is not changed by the parameter 

variation investigated in this thesis (see Appendix B, 

A matrix) . 

Figures H-2 and H-3 are for truth models at param- 

eter points (3,7) and (7,3) respectively.  States 3 and 6 

(corresponding to the highest frequency bending mode posi- 

tion and velocity) are clearly controlled better when the 

truth model is at parameter point (7,3). Hentz found that 

when the true natural frequency (of a simple two state 

system) is greater than the natural frequency upon which 

the controller is designed, the moving-bank estimator/ 

fixed-gain controller drove the system unstable (6:105). 

As compared to parameter point (5,5) , the parameter point 

(7,3) corresponds to an increase in the non-structural 

mass and decrease in the stiffness matrix (both decrease 

the natural frequencies) while the parameter point (3,7) 

corresponds to a decrease in non-structural mass and 

increase in the stiffness matrix (both increase the natural 
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frequencies);   therefore,   it is expected that a steady-state 

controller designed upon the parameter point   (5,5)   would 

do a better job of controlling a truth model based on 

parameter point  (7,3). 

Slightly better transient results are obtained for 

the rigid body motion state (X(l)) when the truth model is 

at parameter point (7,3) although the control of the rigid 

body states is nearly identical for all controller simula- 

tions (Figures H-2, H-3, H-4) . This is expected since the 

modeling of the rigid body states is identical for all 

points in the parameter space   (see Appendix B,  A matrix). 

V.8. Summary 

The results of the moving-bank Multiple Model Adap- 

tive Estimator as applied to the two-bay truss model of a 

space structure have been presented.     The analysis  of 

moving-bank logics is very inconclusive;  however,   the use 

of probability monitoring improves performance over the 

case of fixed bank of  filters corresponding to the finest 

discretization level in  the parameter space.     The Multiple 

Model Adaptive Estimation algorithms provide a substantial 

increase in performance over the case of a  single non- 

adaptive Kaiman filter.    As  such,  the use of a subset of 

filters of the full bank as well as a full bank is  sup- 

ported,  particularly with coarse discretization to allow 

the true parameter value to be encompassed within  the bank 
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while not requiring an excessive number of elemental  filters 

within the algorithm.     Limited investigation into feedback 

control of the structure shows the ability to quell  struc- 

tural oscillations,  but very poor performance in  "pointing" 

the structure. 
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VI. Conclusions and Recommendations 

VI.1.   Introduction 

The investigation of the moving-bank Multiple Model 

Adaptive Estimator took an unexpected course in that its 

results do little to support or argue for a particular 

decision logic for controlling bank motion.  Instead, the 

results mainly focus on the issue of whether a fixed bank 

is more appropriate than a moving bank. The results do 

provide support for implementation of the Multiple Model 

Adaptive Estimator in either form. The thesis does provide 

valuable insight into the issue of parameter discretiza- 

tion and generates a model of a space structure on which 

more research into Multiple Model Adaptive Estimation can 

be based. 

VI.2.   Conclusions 

The rotating two-bay truss model of a space struc- 

ture clearly requires adaptive estimation when subjected 

to the parameter variation investigated in this thesis. 

Although no conclusions could be drawn from the ambiguity 

functions analysis, the Monte Carlo analyses of individual 

filters versus various truth models with dither signal 

clearly showed that adaptive estimation is appropriate. 

The results indicate that a fixed bank with the 

truth model parameter value within the area of the bank 
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performs as well as a moving bank in Monte Carlo simula- 

tions where the truth model is of the same order as the ele- 

mental filter model. When the truth model parameter vector 

is set at parameter point (1,10) and subjected to a dither 

signal of magnitude 500 at frequency of 30 rad/sec, a 

moving bank showed better performance than a fixed bank 

with discretization levels of 1 and 2, and centered at 

parameter point (5,5).  This indicates that the moving bank 

may sometimes be appropriate; however, similar performance 

can be achieved by assuring that the truth model parameter 

vector lies within the discretization of the bank.  Regard- 

less, the use of Multiple Model Adaptive Estimation is 

strongly supported because of the robustness of the 

algorithm and because the state estimation performance for 

a dither signal of magnitudes 5 and 100, is near that of a 

filter given artificial knowledge of the true parameters. 

Although the moving-bank algorithm is sometimes 

able to estimate the states accurately, it is never able 

to identify the truth model parameter vector.  Hentz (6) 

was probably able to obtain satisfactory identification; 

the identification problem is simpler for the two-state 

system he investigated and because the magnitude of the 

parameter variation was very large compared to that investi- 

gated in this thesis. 
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VI. 3 Recommendations 

It is recommended that research continue using 

the rotating two-bay truss model of a flexible space struc- 

ture.     Parameter variations are available which make adap- 

tive estimation appropriate. 

The "truth model"  used in all simulations is of 

the same order as the internal model of the elemental 

filters.     Future research should implement higher order 

truth models as benchmark performance standards ana care- 

fully investigate the effects of purposeful order reduction 

on estimator/controller performance and robustness. 

If continued research is to be accomplished with 

the rotating two-bay truss model,  more realistic dynamics 

driving noise and measurement strengths must be investigated. 

As is discussed in Appendix B,   the dynamics noise and mea- 

surement noise matrices are determined by trial and error 

with the main goal being that of obtaining a model which 

needs adaptive estimation.     Because of time constraints, 

examination of the effect of these Q and R matrices ceased 

once results of the Monte Carlo analysis indicated this 

goal was accomplished.     In addition,   the control of  the 

structure should be examined in more detail.     All of this 

should be done using a single filter versus a higher order 

truth model,   before implementing any form of a Multiple 

Model Adaptive Estimator. 
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Mi Investigation is needed of the effect of various 

discretizations of the parameter space. Especially needed 

is an investigation into the relationship between the 

dynamics and measurement noise strengths and various dis- 

cretizations. As is discussed previously, in a Multiple 

Model Adaptive Estimator, care must be taken not to add 

too much noise to the system model because this masks the 

difference between correct and incorrect filters.  In addi- 

tion, the magnitude of the "real world" noise must have 

similar consideration. Too tight a discretization wastes 

computational resources with little gain in performance, 

while a sparse parameter discretization may sacrifice per- 

formance for unnecessary robustness. 

The rotating two-bay truss model used in this thesis 

effort used measurements obtained from position and velocity 

sensors as well as gyros on the hub. A more realistic 

implementation might be the use of only gyros and acceler- 

ometers for sensors; therefore, the mathematical model 

should implement angular rate and acceleration measurements 

as well as position measurements. 

It may be possible to use fixed-bank Multiple Model 

Adaptive Estimation Algorithm in conjunction with a single 

"moving" filter. The bank would be coarsely discretized 

to assure that the true parameter vector lies within the 

bank and provide adequate estimation/controller performance 

while the single filter moved around the parameter space. 
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The bank would provide a parameter estimate to a single 

filter which could be used thereafter.     In case of a system 

failure or large pareuneter variation,   a new reacquisition 

could be accomplished. 

VI. 4.       Summary 

This thesis applies the fixed-bank and moving-bank 

multiple model adaptive estimator to a flexible space- 

structure.  Although the use of a moving bank may provide 

increased state estimation performance, similar performance 

can be obtained from a fixed bank estimator with a dis- 

cretization that covers the range of parameter variation. 
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Appendix A:  LQG Controller Development 

Assume  that we are given the following stochastic 

system  (3:20-22;   6:33-35): 

x(t)  =  Fx(t)   + Bu + Gw(t) (A-l) 

where 

E{w(t)}   = 0    and    E{w(t)wT(t+T) }  = Q6(T) 

and the quadratic cost function to be minimized is: 

J = E{/     (1/2) [xT(t)W x(t)   + uT(t)W u(t)]dt}       (A-2) 
JO ^ x. ^ u^ 

^^ where W    and W    are weighting matrices  to be chosen 

(iteratively) to yield a controller with desirable perform- 

ance characteristics. The optimal discrete linear feedback 

control law,  assuming full-state access,   is given by: 

u(ti)   =  -Gc*x(ti) (A-3) 

where the constant gains, G , that minimize J, are given by 

(21:68,122): 

Gc*=   [U   + B^K^-^B/K^  +  ST] (A-4) 

where K    satisfies the algebraic  Riccati equation 

Kc  = X   +   $TKc$  -   [Bd
TKc$  +  ST]TGc* (A-5) 
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Vl 
*1(T,ti)Wx*(T,ti)dT 

r    i+1  -T Ü  =   I [B-l(T/ti)WxB(T,ti)   + Wu]d' 

t. 
1 

s ■ r  i+1 T 

-' t. 
)dT 

.•-r^- 

B(t ,4) = I <Mt#T)BdT 

t. 
1 

^-^VrV 

^(tj/t,) is the state transition matrix from t, to t. and: 

»-♦•ti+i-V 

It should be noted that Equation   (A-3)   is also the 

solution for the deterministic LQ optimal control problem 

with no driving noise w(t).    If full state access  is 

replaced by noise-corrupted measurements,  x(t.)   in Equation 

(A-3)   is replaced by the state estimate x(t. ), which is 

generated by a Kaiman filter.    This type of controller is 

often described as having the "certainty equivalence" 

property   (19:17). 
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Appendix B: Rotating Two-Bay Truss System Matrices 

This appendix lists and discusses example system 

matrices for the rotating two-bay truss.  The reduced order 

matrices are developed from the mass and stiffness matrices 

(see Sections III.2 and III.4.3).  The system is in modal 

formulation (see Section III.3.) and is composed of 6 states 

with 6 measurements and 3 control inputs. 

#t 
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Appendix B 

t System Matrices 

Stiffness Matrix 

ROW 1 1.188E+3 
-6.424E+2 

.OOOE+0 

1.966E+2 
.000E+0 
.000E+0 

.OOOE+0 
-5.461E+2 

.000E+0 

.OOOE+O 
-1.966E+2 

.OOOE+0 

ROW 2 1.966E+2 
.000E+0 
.000E+0 

6.263E+2 
.000E+0 
.000E+0 

.000E+0 
-1.966E+2 

.000E+0 

-5.556E+2 
-7.077E+1 

.OOOE+O 

ROW 3 .000E+0 
-5.461E+2 

.000E+0 

.000E+0 
1.966E+2 
.000E+0 

1.188E+3 
-6.424E+2 

.OOOE+0 

-1.966E+2 
.OOOE+0 
.OOOE+0 

ROW 4 .OOOE+0 
1.966E+2 
.000E+0 

-5.556E+2 
-7.077E+1 

.000E+0 

-1.966E+2 
.000E+0 
.000E+0 

6.263E+2 
.OOOE+0 
.OOOE+0 

ROW 5 -6.424E+2 
4.019E+3 

-2.099E+3 

.000E+0 
6.693E+1 
.000E+0 

-5.461E+2 
.OOOE+0 

-7.320E+2 

1.966E+2 
.OOOE+0 

-2.635E+2 

0 ROW 6 .OOOE+0 
6.693E+1 
.000E+0 

.000E+0 
7.212E+2 
.000E+0 

1.966E+2 
.OOOE+0 

-2.635E+2 

-7.077E+1 
-5.556E+2 
-9.487E+1 

ROW 7 -5.461E+2 
.000E+0 

-7.320E+2 

-1.966E+2 
.000E+0 

2.635E+2 

-6.424E+2 
4.019E+3 
-2.099E+3 

.OOOE+0 
-6.693E+1 

.OOOE+0 

ROW 8 -1.966E+2 
.000E+0 

2.635E+2 

-7.077E+1 
-5.556E+2 
-9.487E+1 

.000E+0 
-6.693E+1 

.000E+0 

.OOOE+0 
7.212E+2 
.OOOE+0 

ROW 9 .000E+0 
-2.099E+3 
8.618E+4 

.000E+0 

.000E+0 
4.788E+4 

.OOOE+0 
-7.320E+2 

.000E+0 

.OOOE+0 
2.635E+2 
.OOOE+0 

ROW 10 .000E+0 
.000E+0 

4.788E+4 

.000E+0 

.000E+0 
1.390E+5 

.000E+0 
2.635E+2 
.000E+0 

.OOOE+O 
-9.487E+1 
-1.111E+5 

ROW 11 .000E+0 
-7.320E+2 

.OOOE+O 

.000E+0 
-2.635E+2 

.OOOE+0 

.000E+0 
-2.099E+3 
8.618E+4 

.OOOE+0 

.OOOE+0 
-4.788E+4 

t ROW 12 .000E+0 
-2.635E+2 

.000E+0 

.000E+0 
-9.487E+1 
-1.111E+5 

.000E+0 

.OOOE+O 
-4.788E+4 

.OOOE+O 

.OOOE+0 
1.390E+5 
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Mass Matrix 

Note that the first 8 diagonal elements are essentially 

the values of the non-structural mass because the non-struc- 

tural mass Is large compared to the structural mass. 

er— 

ROW 1 

ROW 2 

ROW 3 

ROW  4 

ROW  5 

ROW 6 

ROW 7 

ROW  8 

ROW 9 

ROW 10 

ROW 11 

1.294E+0 
6.927E-6 
.000E+0 

-2.395E-6 
.000E+0 
.000E+0 

.000E+0 
6.652E-6 
.000E+0 

.000E+0 
-2.395E-6 

.000E+0 

6.927E-6 
1.294E+0 
2.263E-5 

.000E+0 
-8.152E-7 

.00OE+0 

6.652E-6 
.00OE+O 

8.916E-6 

2.395E-6 
.000E+0 

•3.210E-6 

.000E+0 
2.263E-5 
8.817E-4 

.000E+0 

.00OE+0 
-6.402E-5 

.000E+0 
8.916E-6 
.000E+0 

-2.395E-6 
.000E+0 
.00OE+O 

1.294E+0 
.000E+0 
.000E+0 

.000E+0 
-2.395E-6 

.OOOE+0 

7.764E-7 
8.621E-7 
.000E+0 

.000E+0 
-8.152E-7 

.000E+0 

.000E+0 
1.294E+0 
.000E+0 

2.395E-6 
.000E+0 

-3.210E-6 

8.621E-7 
7.764E-7 
1.156E-6 

.000E+0 

.000E+0 
-6.402E-5 

.000E+0 

.000E+0 
8.343E-4 

.000E+0 
3.210E-6 
.000E+0 

.000E+0 
6.652E-6 
.000E+0 

.000E+O 
2.395E-6 
.000E+O 

1.294E+0 
6.927E-6 
.000E+O 

2.395E-6 
.000E+0 
.000E+0 

6.652E-6 
.000E+0 

8.916E-6 

-2.395E-6 
.000E+O 

3.210E-6 

6.927E-6 
1.294E+0 
2.263E-5 

.000E+0 
8.152E-7 
.000E+0 

.000E+0 
8.916E-6 
.000E+0 

.000E+0 
■3.210E-6 
.000E+O 

.OOOE+0 
2.263E-5 
8.817E-4 

.000E+0 
2.395E-6 
.000E+0 

7.764E-7 
8.621E-7 
.000E+0 

2.395E-6 
.OOOE+0 
.000E+0 

1.294E+0 
.OOOE+O 
.000E+0 

-2.395E-6 
.000E+0 

3.210E-6 

8.621E-7 
7.764E-7 
1.156E-6 

.000E+0 
8.152E-7 
.000E+0 

.000E+0 
1.294E+0 
.000E+0 

.000E+0 
•3.210E-6 
.000E+0 

.000E+0 
1.156E-6 
1.553E-4 

.000E+0 

.000E+0 
6.402E-5 
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ROW 12 .000E+0 
3.210E-6 
.000E+0 

.000E+0 
1.156E-6 
1.553E-4 

.OOOE+0 

.000E+0 
6.402E-5 

.000E+0 

.000E+0 
8.343E-4 

1*7 

A Matrix 

.000E+0   .000E+0   .000E+0 1.000E+0   .000E+0 .OOOE+0 

.000E+0   .OOOE+0   .OOOE+0 .OOOE+0  1.OOOE+0 .OOOE+0 

.OOOE+0   .OOOE+0   .OOOE+0 .OOOE+0   .OOOE+0 1.000E+0 

.OOOE+0   .OOOE+0   .OOOE+0 .OOOE+0   .OOOE+0 .OOOE+0 

.OOOE+0 -7.918E+1   .OOOE+0 .OOOE+0 -8.898E-2 ' .OOOE+0 

.OOOE+0   .OOOE+0 -5.085E+2 .OOOE+0   .OOOE+0 -2.255E-1 

Rows 1 and 4 correspond to the rigid body angular 

position and velocity, respectively. Rows 2 and 3 correspond 

to the position of the first and second bending modes, 

respectively, while rows 5 and 6 represent the velocity of 

these bending modes, respectively. 

B Matrix 

.OOOE+0 .OOOE+0 

.OOOE+0 .OOOE+0 

.OOOE+0 .OOOE+0 
-4.773E-1 -2.711E-1 
2.589E-1 14.736E-1 
9.488E-2 1.590E-1 

.OOOE+0 

.OOOE+0 

.OOOE+0 
1.OOOE+0 
.OOOE+0 
.OOOE+0 

The first two columns represent Inputs from actuators 

located on the truss while the third column is due to an 

actuator located on the hub (see Section III.4.4.).  The 

non-zero portion of the first two columns was designed In 

physical coordinates in the unreduced system as 

010000000000 
000001000000 

(B-l) 

and then transformed into modal coordinates where the angular 

input actuator was then added by augmenting a column and 
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entering a 1.00 In the row corresponding to the angular 

velocity state. 

H Matrix 

6.066E-1 -3.239E-1 -1.228E-1 .000E+0   .000E+0   .000E+0 
3.444E-1 5.925E-1 -2.057E-1 .0O0E+0   .000E+0   .000E+0 
.OOOE+O .000E+0   .00OE+O 6.066E-1 -3.239E-1 -1.228E-1 
.000E+0 .000E+0   .000E+0 3.444E-1  5.925E-1 -2.057E-1 

1.OOOE+O .000E+0   .000E+0 .000E+0   .000E+0   .000E+0 
.OOOE+O .OOOE+O   .000E+0 1.000E+0   .000E+0   ,000E+0 

The first four rows represent measurements from the 

position and velocity sensors located on the two bay truss 

while the last two rows represent measurements of the angular 

velocity and position of the hub (see Section 111.4.4.).  The 

position and velocity portion of the matrix were calculated 

In physical coordinates and then transformed Into modal co- 

ordinates (see Section 111.3.) where the angular measurements 

were augmented.  Note that the entries In rows 1 and 2 are 

Identical to those In rows 3 and 4 because of co-location of 

velocity and position sensors.  Ro^s 1 and 2 were designed In 

physical coordinates In the unreduced system as: 

010000000000 (B-2) 
000001000000 

Only the first twelve columns are listed because the remain- 

ing columns are zero. 
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Controller State Weighting Matrix 

The state weighting matrices (see Appendix A) were also 

determined by trial and error; however, a first cut at the 6 

state weighting matrix was obtained using the following 

weightings : 

Angular Position o.si.|f 

Angular Velocity 0.51 

Bending Mode Position 0-5,Knat 

Bending Mode Velocity 0.511 (B-3) 

where I Is the moment of inertia, BW denotes the bandwidth 

of the controlled system, K + is the natural frequency 

of the mode, and M is the mass of the structure.  Note that 

0.5M can be factored out of each term, which accounts for the 

Identity elements in the state weighting matrix listed below. 

A limited amount of trial and error was used in order to 

improve the controller performance. The goal was to quell 

oscillations as well as force the rigid body angular po-sl- 

tion to zero, in order to simulate pointing a structure. 

The following state weighting matrix was Implemented: 

7.627E+3 .000E+0 .000E+0 .000E+0 .0OOE+0 .000E+0 
.000E+0 7.9178E+1 .000E+0 .000E+0 .000E+0 .000E+0 
.000E+0 .000E+0 5.085E+2 .000E+0 .0OOE+0 .000E+0 
.000E+0 .000E+0 .000E+O 1.500E+2 .000E+0 .000E+0 
.0OOE+0 .000E+0 .000E+0 .000E+0 1.000E+0 .000E+0 
.0OOE+0 .000E+0 .000E+0 .000E+0 .000E+0 1.000E+0 

Maybeck, Peter S., "Improved Controller Performance 
Through Estimation  of uncertain Parameters,"  Spacecraft 
Autopilot Development Memo #17-68, Massachusetts Institute of 
Technology, Instrumentation Laboratory, Cambridge, Massachusetts 
(October 17, 1968). 
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Control Weighting Matrix 

The control weighting matrices (see Appendix A) were 

determined basically by trial and error In conjunction with a 
2 

method used by Venkayya .  Lynch [16] In his research with a 

fixed two bay truss (see Section III.4.2.) limited the 

magnitude of the force of an Individual actuator to 100 lbs. 

Although this limit was not Implemented In this thesis, It 

was used as a general guideline as to a reasonable range of 

actuator activity. 

300 0 0 
0 300 0 
0   0  900 

D  Matrix —r   

The D matrix (see Section III.5) Is used In a r 

method of order reduction referred to as singular perturba- 

tions.  This thesis used reduced order models; however, 

this method was not Implemented because truth models were of 

the same order. 

-4.253E-4 6.396E-5 O.OOOE-0 
6.396E-5 -3.583E-4 O.OOOE-0 
O.OOOE-0 O.OOOE-O O.OOOE-0 
O.OOOE-0 O.OOOE-O O.OOOE-0 
O.OOOE-0 O.OOOE-O O.OOOE-0 
O.OOOE-0 O.OOOE-0 O.OOOE-0 

o 
Venkayya, V.B., Tischler, V.A., Khot, Narenndra, S., 

"Dynamics and Control of Space Structures, "26th Structures, 
Structural Dyanamlcs, and Materials Conference, Orlando, Florida, 
April 1985 (AIAA No. -15^0629^?). 
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Noise Matrices 

!-;-V; A viable estimation system depends upon Information from 

both the measurements and the mathematical model of that 

system.  Making the R matrix too small (which corresponds 

to very accurate measurements) results In the filter essen- 

tially using only the measurement Information and discarding 

the Information propagated from the previous sample period, 

while assuming very Inaccurate measurements causes the filter 

to depend only upon Its Internal model. The former would 

make Implementation of the moving-bank multiple model 

adaptive estimator difficult and pointless since differences 

In the Internal filter models would have little effect on 

estimation accuracy. 

The covarlance update for a discrete time system Is 

calcualated as [19:275]: 

P(t* ) - Ht^)   -  K(ti")H(ti)P(ti") (B-4) 

where, 

K(ti) - P(ti)H
T(til)H(ti)P(ti~)H

T(ti) 

Pit±   ) »  (ti.ti_1)P(ti_1
+) T(ti,ti_1)  + 

/. 

i4)(ti,x)G(T)Q(x)G
T(T) /(ti,T)dT 

tl-l 

The Q and R matrix were selected to satisfy two basic 

criteria.     First,   the Q matrix must be  large enough to 

excite the system reasonably,  over a single propagation 

cycle.     Secondly,   the R matrix must be on the same order  of 
-    T magnitude as the H(t.)P(t.   )H  (t.)  term so that the filter 

will use both the measurements and internal model  informa- 
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tion.  The Q matrix was selected by purely trial and error 

starting with an Identity atrlx.  The Initial R matrix was 

selected by arbitrarily determining levels of errors for 

measurments of the velocity, position, and angular states. 

These Initial attempts produced a system which essentially 

believed only the Internal dynamics model.  Another R matrix 

- T was Implemented by simply calculating H(ti)P(ti )H (t.). 

Inspection of the PCt.") and P(t. ) matrices Indicated that 

the design goals had been achieved.  The values In the Q 

matrix were reduced slightly In the final design In order to 

produce a system which weighted Internal Information more 

than measurements although within the criteria discussed 

previously.  The Q and R matrices are: 

Q Matrix 

10 0 0 
0 10 0 
0    0    1 

R MATRIX 

2.700E-3 -3.700E-3 7.000E-4 -1.000E-4 7.000E-4 7.000E-4 
-3.700E-3  7.600E-3 -6.000E-4 1.400E-3 4.000E-4 4.000E-4 
7.000E-4 -6.000E-4 4.303E+0 3.058E-1 7.000E-4 5.423E+0 

-1.000E-4  1.400E-3 3.058E-1 4.267E+0 4.000E-4 3.057E+0 
7.000E-4  4.000E-4 7.000E-4 4.000E-4 1.200E-3 1.200E-3 
7.000E-4  4.000E-4 5.423E+0 3.057E+0 1.200E-3 8.550E+0 
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Appendix C: Monte Carlo Simulations of 
Elemental Filters 

Appendix C contains the Monte Carlo runs of ele- 

mental filters versus a truth model.  The title of each 

figure indicates the parameter point upon which the filter 

model is designed. The truth model for all simulations is 

based upon the internal model of the filter at parameter 

point (5,5).  The magnitude of the dither signal is equal 

to 5 at a frequency of 30 rad/sec. 
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Appendix D: Monte Carlo Simulation Plots of the 
Moving-Bank Multiple Model 

Adaptive Estimator 

Appendix D contains sample plots reflecting the 

performance of the moving bank multiple model adaptive 

estimator at its finest discretization, using probability 

monitoring.  The bank is initially centered at the param- 

eter point (5,5). The magnitude of the dither signal is 

equal to 5 at a frequency of 30 rad/sec.  The title of 

each figure indicates the parameter point upon which the 

truth model is based. 
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Appendix E:  Monte Carlo Simulation Plots of 
Fixed-Bank Multiple Model 

Adaptive Estimator 

Appendix E contains plots reflecting the perform- 

ance of the fixed-bank estimator at various discretiza- 

tions and against various  truth models.     The magnitude of 

the dither signal is equal to 100 at a  frequency of 30 

rad/sec.     The title of each figure indicates the parameter 

vector upon which the truth model is based. 
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Appendix F: Fixed-Bank and Moving-Bank Comparison 
with Dither Signal = 100 

This appendix contains a plot used in comparing 

the performance of a fixed-bank to a moving-bank estimator. 

Probability monitoring is implemented with a bank move 

threshold of 0.25.  The bank is at its finest discretiza- 

tion with a dither signal of magnitude = 100 and frequency 

of 30 rad/sec.  The truth model is based on the parameter 

vector (3,7). 
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Appendix G:   Fixed-Bank and Moving-Bank Comparison 
with Dither  Signal  = 500 

This  appendix contains plots  used   in comparing 

the performance of  a  fixed-bank  to a moving-bank estimator. 

The dither  signal   is of magnitude =  100 and frequency = 

30  rad/sec.     The  truth model  is based upon  the parameter 

point   (1,10) .     Figure G-l  implements  a moving bank  that  is 

initially centered  on the parameter point   (5,5)   while the 

remaining figures  are from simulations  incorporating a 

fixed-bank.     The title indicates  the discretization  of the 

tilter as well  as   the bank move  threshold  for the case of 

the moving-bank. 
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Appendix H: Controller Performance 

This appendix contains plots reflecting control 

using a fixed bank at a discretization of 1 and c«. ntered 

at parameter point (5,5) .  A dither signal of magnitude = 

500 is applied for 1 second beginning at t = 0.  At t = 0, 

control is applied.  Plot H-l provides a comparison for 

the case where no control is applied at t = 1.0.  The con- 

trol gains are based on the parameter vector at point 

(5,5). 
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